scholarly journals Fetal Dopaminergic Neurons Transplanted to the Normal Striatum of Neonatal or Adult Rats and to the Denervated Striatum of Adult Rats

1997 ◽  
Vol 6 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Vandana Sable ◽  
K. Sailaja ◽  
Gomathy Gopinath ◽  
P. N. Tandon

Fetal ventral mesencephalon from the 15th gestational day was grafted into the striatum of neonatal and adult rats. In one group of adult rats, fetal nigra was transplanted into normal striatum. In a second group, the tissue was transplanted at sites where dopaminergic fibers were denervated with 6-hydroxydopamine. The behavior of the dopaminergic neurons and glial reactions were studied by staining with cresyl violet to localize the transplants and by immunolabeling tyrosine hydroxylase (TH) and glial fibrillary acidic protein. In normal adults, the transplants were small. At the edge of the transplants, TH-positive neurons were packed into clusters, and an interface without any significant crossover of TH-positive fibers was present. Glial reaction was minimal in and around the transplant. In the denervated striatum, transplants were generally larger than those in normal striatum and surrounded by a glial scar. TH-positive neurons were both closely packed and loosely arranged at the periphery of the transplants. Processes could be clearly defined and could be traced to the adjacent host striatum through the TH-free denervated area. In neonates, the transplants were large and at times extended beyond the striatum. Most TH-positive neurons were arranged linearly along the periphery of the transplant. Cell bodies were widely separated and a well-developed neuropil was present. Fibers from the transplant mingled freely with the host striatum without any interface. In all three transplant groups, tracing the TH-positive neurites was easy because they were thicker and coarser than other elements. No apparent glial reaction occurred in the neonates. Thus, the growth and maturation of dopaminergic neurons seemed to vary in different environments. The most conducive environment appears to be neonatal brain in which growth factors are readily available.

Synapse ◽  
2018 ◽  
Vol 73 (3) ◽  
pp. e22077 ◽  
Author(s):  
Steven Vetel ◽  
Sophie Sérrière ◽  
Johnny Vercouillie ◽  
Jackie Vergote ◽  
Gabrielle Chicheri ◽  
...  

1989 ◽  
Vol 163 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Richard M. Kostrzewa ◽  
Teresa G. White ◽  
James E. Zadina ◽  
Abba J. Kastin
Keyword(s):  

Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2409-2419 ◽  
Author(s):  
J.E. Braisted ◽  
T.F. Essman ◽  
P.A. Raymond

Previous work has shown that the neural retina in adult goldfish can regenerate. Following retinal damage elicited by surgical or cytotoxic lesions, missing neurons are replaced by foci of proliferating neuroepithelial cells, which previous studies have suggested are derived from rod precursors. In the intact retina, rod precursors proliferate but produce only new rods. The regenerative responses observed previously have involved replacement of neurons in all retinal layers; selective regeneration of specific neuronal types (except for rod photoreceptors) has not been reported. In the experiments described here, we specifically destroyed either cones alone or cones and rods with an argon laser, and we found that both types of photoreceptors regenerated within a few weeks. The amount of cone regeneration varied in proportion to the degree of rod loss. This is the first demonstration of selective regeneration of a specific class of neuron (i.e., cones) in a region of central nervous tissue where developmental production of that class of neuron has ceased. Selective regeneration may be limited to photoreceptors, however, because when dopaminergic neurons in the inner retina were ablated with intraocular injections of 6-hydroxydopamine, in combination with laser lesions that destroyed photoreceptors, the dopaminergic neurons did not regenerate, but the photoreceptors did. These data support previous studies which showed that substantial cell loss is required to trigger regeneration of inner retinal neurons, including dopaminergic neurons. New observations here bring into question the presumption that rod precursors are the only source of neuronal progenitors during the regenerative response. Finally, a model is presented which suggests a possible mechanism for regulating the phenotypic fate of retinal progenitor cells during retinal regeneration.


1997 ◽  
Vol 6 (3) ◽  
pp. 267-276 ◽  
Author(s):  
R.E. Johnston ◽  
Jill B. Becker

Intrastriatal grafts of fetal ventral mesencephalon in rats with unilateral 6-hydroxydopamine lesions can reduce and even reverse rotational behavior in response to direct and indirect dopamine agonists. These grafts can ameliorate deficits on simple spontaneous behaviors, but do not improve complex behaviors that require the skilled integration of the use of both paws. We report here that rats with grafts into the DA-depleted substantia nigra, that receive cyclosporine A, can experience recovery on spontaneous behaviors that mimic those observed in Parkinson's disease. Specific cyclosporine A treatment conditions can differentially affect whether intranigral grafts normalize paw use during initiation or termination of a movement sequence. These findings may have important implications for the treatment of Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document