scholarly journals A note of almost continuous mappings and Baire spaces

1983 ◽  
Vol 6 (1) ◽  
pp. 197-199
Author(s):  
Jing Cheng Tong

We prove the following theorem: THEOREM. LetYbe a second countable, infiniteR0-space. If there are countably many open sets01,02,…,0n,…inYsuch that01⫋02⫋…⫋0n⫋…, then a topological spaceXis a Baire space if and only if every mappingf:X→Yis almost continuous on a dense subset ofX. It is an improvement of a theorem due to Lin and Lin [2].

1978 ◽  
Vol 21 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Shwu-Yeng T. Lin ◽  
You-Feng Lin

AbstractIt is proved, in particular, that a topological space X is a Baire space if and only if every real valued function f: X →R is almost continuous on a dense subset of X. In fact, in the above characterization of a Baire space, the range space R of real numbers may be generalized to any second countable, Hausdorfï space that contains infinitely many points.


1984 ◽  
Vol 7 (3) ◽  
pp. 619-620
Author(s):  
Jingcheng Tong

The following result is proved:LetYbe a second countable, infinite topological space with an ascending chain of regular open sets. Then a topological spaceXis a Baire space if and only if every mappingf:X→Yis almost continuous on a dense subset ofX.It is another improvement of a theorem of Lin and Lin [2].


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


2005 ◽  
Vol 2005 (1) ◽  
pp. 19-32 ◽  
Author(s):  
A. A. Ramadan ◽  
S. E. Abbas ◽  
A. A. Abd El-Latif

We introduce fuzzy almost continuous mapping, fuzzy weakly continuous mapping, fuzzy compactness, fuzzy almost compactness, and fuzzy near compactness in intuitionistic fuzzy topological space in view of the definition of Šostak, and study some of their properties. Also, we investigate the behavior of fuzzy compactness under several types of fuzzy continuous mappings.


We introduce and study several interesting properties of fuzzy almost generalized e -continuous mappings in smooth topological spaces with counter examples. We also introduce fuzzy r - 1 2 fT e -space, r -fuzzy ge -space, r -fuzzy regular ge -space and r -fuzzy generalized e -compact space. It is seen that a fuzzy almost generalized e -continuous mapping, between a fuzzy r - 1 2 fT e -space and a fuzzy topological space, becomes fuzzy almost continuous mapping. Index Terms: fage -continuous, r - fge -space, r - fge -regular space, r - 1 2 fT e -space.


1968 ◽  
Vol 11 (3) ◽  
pp. 453-455 ◽  
Author(s):  
Shwu-Yeng T. Lin

Let E be a metric Baire space and f a real valued function on E. Then the set of points of almost continuity in E is dense (everywhere) in E.Our purpose is to set this result in its most natural context, relax some very restricted hypotheses, and to supply a direct proof. More precisely, we shall prove that the metrizability of E in Theorem H may be removed, and that the range space may be generalized from the (Euclidean) space of real numbers to any topological space satisfying the second axiom of countability [2].


2019 ◽  
Vol 69 (3) ◽  
pp. 699-706 ◽  
Author(s):  
Alexander V. Osipov

Abstract For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology. A Menger space is a topological space in which for every sequence of open covers 𝓤1, 𝓤2, … of the space there are finite sets 𝓕1 ⊂ 𝓤1, 𝓕2 ⊂ 𝓤2, … such that family 𝓕1 ∪ 𝓕2 ∪ … covers the space. In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that Cλ(X) is Menger if and only if Cλ(X) is σ-compact; Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X.


1981 ◽  
Vol 33 (6) ◽  
pp. 1420-1431 ◽  
Author(s):  
Harald Brandenburg

A topological space X is called developable if it has a development, i.e., a sequence of open covers of X such that for each x ∈ X the collection is a neighbourhood base of x, whereThis class of spaces has turned out to be one of the most natural and useful generalizations of metrizable spaces [23]. In [4] it was shown that some well known results in metrization theory have counterparts in the theory of developable spaces (i.e., Urysohn's metrization theorem, the Nagata-Smirnov theorem, and Nagata's “double sequence theorem”). Moreover, in [3] it was pointed out that subspaces of products of developable spaces (i.e., D-completely regular spaces) can be characterized in much the same way as subspaces of products of metrizable spaces (i.e., completely regular T1-spaces).


1992 ◽  
Vol 46 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Warren B. Moors

For a set E in a metric space X the index of non-separability is β(E) = inf{r > 0: E is covered by a countable-family of balls of radius less than r}.Now, for a set-valued mapping Φ from a topological space A into subsets of a metric space X we say that Φ is β upper semi-continuous at t ∈ A if given ε > 0 there exists a neighbourhood U of t such that β(Φ(U)) < ε. In this paper we show that if the subdifferential mapping of a continuous convex function Φ is β upper semi-continuous on a dense subset of its domain then Φ is Fréchet differentiable on a dense Gδ subset of its domain. We also show that a Banach space is Asplund if and only if every weak* compact subset has weak* slices whose index of non-separability is arbitrarily small.


Sign in / Sign up

Export Citation Format

Share Document