1978 ◽  
Vol 21 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Shwu-Yeng T. Lin ◽  
You-Feng Lin

AbstractIt is proved, in particular, that a topological space X is a Baire space if and only if every real valued function f: X →R is almost continuous on a dense subset of X. In fact, in the above characterization of a Baire space, the range space R of real numbers may be generalized to any second countable, Hausdorfï space that contains infinitely many points.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


2019 ◽  
Vol 69 (3) ◽  
pp. 699-706 ◽  
Author(s):  
Alexander V. Osipov

Abstract For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology. A Menger space is a topological space in which for every sequence of open covers 𝓤1, 𝓤2, … of the space there are finite sets 𝓕1 ⊂ 𝓤1, 𝓕2 ⊂ 𝓤2, … such that family 𝓕1 ∪ 𝓕2 ∪ … covers the space. In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that Cλ(X) is Menger if and only if Cλ(X) is σ-compact; Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X.


1992 ◽  
Vol 46 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Warren B. Moors

For a set E in a metric space X the index of non-separability is β(E) = inf{r > 0: E is covered by a countable-family of balls of radius less than r}.Now, for a set-valued mapping Φ from a topological space A into subsets of a metric space X we say that Φ is β upper semi-continuous at t ∈ A if given ε > 0 there exists a neighbourhood U of t such that β(Φ(U)) < ε. In this paper we show that if the subdifferential mapping of a continuous convex function Φ is β upper semi-continuous on a dense subset of its domain then Φ is Fréchet differentiable on a dense Gδ subset of its domain. We also show that a Banach space is Asplund if and only if every weak* compact subset has weak* slices whose index of non-separability is arbitrarily small.


1983 ◽  
Vol 6 (1) ◽  
pp. 197-199
Author(s):  
Jing Cheng Tong

We prove the following theorem: THEOREM. LetYbe a second countable, infiniteR0-space. If there are countably many open sets01,02,…,0n,…inYsuch that01⫋02⫋…⫋0n⫋…, then a topological spaceXis a Baire space if and only if every mappingf:X→Yis almost continuous on a dense subset ofX. It is an improvement of a theorem due to Lin and Lin [2].


1995 ◽  
Vol 26 (3) ◽  
pp. 243-250
Author(s):  
JULIAN DONTCHEV

A topological space $X$ is called submaximal if every dense subset of $X$ is open. In this paper, which is an enlarged version of Section 3 in [7], we characterize submaximal spaces using various topological notions. We study the connections between submaximal and related spaces as well as we improve some results concerning submaximal space achieved by Mahmoud and Rose in [7].


1967 ◽  
Vol 19 ◽  
pp. 488-498 ◽  
Author(s):  
W. A. J. Luxemburg ◽  
J. J. Masterson

Let L be a σ-Dedekind complete Riesz space. In (8), H. Nakano uses an extension of the multiplication operator on a Riesz space into itself (analagous to the closed operator on a Hilbert space) to obtain a representation space for the Riesz space L. He calls such an operator a “dilatator operator on L.” More specifically, he shows that the set of all dilatator operators , when suitable operations are defined, is a Dedekind complete Riesz space which is isomorphic to the space of all functions defined and continuous on an open dense subset of some fixed totally disconnected Hausdorff space. The embedding of L in the function space is then obtained by showing that L is isomorphic to a Riesz subspace of . Moreover, when L is Dedekind complete, it is an ideal in , and the topological space is extremally disconnected.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yangrong Li ◽  
Shuang Yang ◽  
Guangqing Long

<p style='text-indent:20px;'>We study the continuity of a family of random attractors parameterized in a topological space (perhaps non-metrizable). Under suitable conditions, we prove that there is a residual dense subset <inline-formula><tex-math id="M1">\begin{document}$ \Lambda^* $\end{document}</tex-math></inline-formula> of the parameterized space such that the binary map <inline-formula><tex-math id="M2">\begin{document}$ (\lambda, s)\mapsto A_\lambda(\theta_s \omega) $\end{document}</tex-math></inline-formula> is continuous at all points of <inline-formula><tex-math id="M3">\begin{document}$ \Lambda^*\times \mathbb{R} $\end{document}</tex-math></inline-formula> with respect to the Hausdorff metric. The proofs are based on the generalizations of Baire residual Theorem (by Hoang et al. PAMS, 2015), Baire density Theorem and a convergence theorem of random dynamical systems from a complete metric space to the general topological space, and thus the abstract result, even restricted in the deterministic case, is stronger than those in literature. Finally, we establish the residual dense continuity and full upper semi-continuity of random attractors for the random fractional delayed FitzHugh-Nagumo equation driven by nonlinear Wong-Zakai noise, where the size of noise belongs to the parameterized space <inline-formula><tex-math id="M4">\begin{document}$ (0, \infty] $\end{document}</tex-math></inline-formula> and the infinity of noise means that the equation is deterministic.</p>


1984 ◽  
Vol 7 (3) ◽  
pp. 619-620
Author(s):  
Jingcheng Tong

The following result is proved:LetYbe a second countable, infinite topological space with an ascending chain of regular open sets. Then a topological spaceXis a Baire space if and only if every mappingf:X→Yis almost continuous on a dense subset ofX.It is another improvement of a theorem of Lin and Lin [2].


1964 ◽  
Vol 16 ◽  
pp. 253-260 ◽  
Author(s):  
Henry B. Cohen

The letter k denotes an infinite cardinal. A space is a compact Hausdorff space unless otherwise indicated. A space is called extremally disconnected (k-extremally disconnected) if it is the Stone space for a complete (k-complete) Boolean algebra. A map is a continuous function from one space into another. A map f:X —> Y is called minimal if f is onto, but f(M) is properly contained in Y for each closed proper subset M of X. A space F is called free if F has a dense subset X such that every space-valued function on X extends to a map on all of F or, equivalently, if F is the Stone-Cech compactification of some discrete topological space X.


Sign in / Sign up

Export Citation Format

Share Document