scholarly journals Numerical Flow Analysis in a Rotating Square Duct and a Rotating Curved-Duct

2000 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Je Hyun Baekt ◽  
Chang Hwan Ko

A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

1994 ◽  
Vol 274 ◽  
pp. 243-265 ◽  
Author(s):  
O. John E. Matsson ◽  
P. Henrik Alfredsson

An experimental study is reported of the flow in a high-aspect-ratio curved air channel with spanwise system rotation, utilizing hot-wire measurements and smoke visualization. The experiments were made at two different Dean numbers (De), approximately 2 and 4.5 times the critical De for which the flow becomes unstable and develops streamwise vortices. For the lower De without system rotation the primary Dean instability appeared as steady longitudinal vortices. It was shown that negative spanwise system rotation, i.e. the Coriolis force counteracts the centrifugal force, could cancel the primary Dean instability and that for high rotation rates it could give rise to vortices on the inner convex channel wall. For positive spanwise system rotation, i.e. when the Coriolis force enhanced the centrifugal force, splitting and merging of vortex pairs were observed. At the higher De secondary instabilities occurred in the form of travelling waves. The effect of spanwise system rotation on the secondary instability was studied and was found to reduce the amplitude of the twisting and undulating motions for low negative rotation. For low positive rotation the amplitude of the secondary instabilities was unaffected for most regions in parameter space.


1993 ◽  
Vol 115 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Ray Jan

The continuity equation and Navier-Stokes equations derived from a non-orthogonal helical coordinate system are solved by the Galerkin finite-element method in an attempt to study the torsion effect on the fully developed laminar flow in the helical square duct. Since high-order terms of curvature and torsion are considered, the approach is also applicable to the problems with finite curvature and torsion. The interaction effects of curvature, torsion, and the inclined angle of the cross section on the secondary flow, axial velocity, and friction factor in the helical square duct are presented. The results show that the torsion has more pronounced effect on the secondary flow rather than the axial flow. In addition, unlike the flow in the toroidal square duct, Dean’s instability of the secondary flow, which occurs near the outer wall in the helical square duct, can be avoided due to the effects of torsion and/or inclined angle. In such cases, a decrease of the friction factor is observed. However, as the pressure gradient decreases to a small value, the friction factor for the toroidal square duct is also applicable to the helical square duct.


2020 ◽  
pp. 321-321
Author(s):  
Yunsong Zhang ◽  
Yongbao Liu ◽  
Yujie Li ◽  
Qijie Li

In this paper, the effects of shroud movement on transonic flow and heat transfer in the vicinity of turbine tip was studied by using three-dimensional simulation of GE-E3 first-stage HPT. Aerothermal performance and flow structure were analyzed with and without turbine shroud moving, respectively. Based on the distribution of limiting streamlines and the vortex structures, the influential characteristics between the leakage flow and the secondary flow generated by shroud movement were studied. Moreover, the coefficient of heat transfer at the wall were investigated. Results show that the flow structure is changing with the movement of turbine shroud, and the location of the separation line changes significantly by the influence of the secondary flow. The leakage vortex initial location delayed in axial direction and its breakdown point located at 65% cross section. This accelerates the mixing loss and increase the perturbation. In addition, it is observed that the coefficient of average heat transfer is increased obviously by 54.8% in the region of shroud surface. However, this coefficient in the region of suction surface decreased by 11.9%.


1973 ◽  
Vol 95 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Sankaraiah ◽  
Y. V. N. Rao

Steady laminar flow of an incompressible Newtonian fluid through a curved pipe of small curvature is considered. The governing equations of flow are obtained in terms of secondary flow stream function and axial velocity component as suggested by Dean. A method of successive approximations is developed to solve these equations. The first five approximations are computed. The solution obtained is used to determine the axial velocity distribution, secondary flow pattern, axial pressure drop, and pressure distribution along the pipe wall. A semiempirical equation is obtained for axial pressure drop. The theoretical results obtained are compared with the available experimental data on axial pressure drop.


1993 ◽  
Vol 115 (1) ◽  
pp. 172-175 ◽  
Author(s):  
Hyon Kook Myong

The generation mechanism of turbulence-driven secondary flows in a square duct is numerically investigated in the present study by using an anisotropic low-Reynolds-number k–ε turbulence model. Special attention is directed to the distributions of turbulence quantities, which are responsible for the secondary flow generation, such as the anisotropy of normal Reynolds stresses and the secondary Reynolds shear stress acting on the cross-sectional plane. The vorticity transport process is also discussed in detail, based on the numerical evaluation of the individual terms which appear in the streamwise vorticity transport equation.


1988 ◽  
Vol 66 (7) ◽  
pp. 576-579
Author(s):  
G. T. Karahalios ◽  
C. Sfetsos

A sphere executes small-amplitude linear and torsional oscillations in a fluid at rest. The equations of motion of the fluid are solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition to the time-varying motion.


1976 ◽  
Vol 12 (7) ◽  
pp. 702-707
Author(s):  
F. M. Gimranov ◽  
N. Kh. Zinnatullin ◽  
F. A. Garifullin

2014 ◽  
Vol 76 ◽  
pp. 206-215 ◽  
Author(s):  
Jacopo De Amicis ◽  
Antonio Cammi ◽  
Luigi P.M. Colombo ◽  
Marco Colombo ◽  
Marco E. Ricotti
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document