dean vortices
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
pp. 117105
Author(s):  
Bingqi Xie ◽  
Caijin Zhou ◽  
Junxin Chen ◽  
Xiaoting Huang ◽  
Jisong Zhang

2021 ◽  
Vol 165 ◽  
pp. 106913
Author(s):  
Pingting Chen ◽  
Wei Shi ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 184
Author(s):  
Afshin Goharzadeh ◽  
Peter Rodgers

In this study, experimental measurements were undertaken using non-intrusive particle image velocimetry (PIV) to investigate fluid flow within a 180° rectangular, curved duct geometry of a height-to-width aspect ratio of 0.167 and a curvature of 0.54. The duct was constructed from Plexiglas to permit optical access to flow pattern observations and flow velocity field measurements. Silicone oil was used as working fluid because it has a similar refractive index to Plexiglas. The measured velocity fields within the Reynolds number ranged from 116 to 203 and were presented at the curved channel section inlet and outlet, as well as at the mid-channel height over the complete duct length. It was observed from spanwise measurements that the transition to unsteady secondary flows generated the creation of wavy structures linked with the formation of Dean vortices close to the outer channel wall. This flow structure became unsteady with increasing Reynolds number. Simultaneously, the presence of Dean vortices in the spanwise direction influenced the velocity distribution in the streamwise direction. Two distinct regions defined by a higher velocity distribution were observed. Fluid particles were accelerated near the inner wall of the channel bend and subsequently downstream near the outer channel wall.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Basant K. Jha ◽  
Dauda Gambo

AbstractHydrodynamic behaviour of slip flow and radially applied exponential time-dependent pressure gradient in a curvilinear concentric cylinder is examined. A two-step method of solution has been utilized in resolving the governing momentum equation. Accordingly, the exact solution of the time-dependent partial differential equation is derived in terms of the Laplace parameter. Afterwards, the Laplace domain solution is then inverted to time domain using a numerical-based inverting scheme known as Riemann-sum approximation. The effect of various dimensionless parameters involved in the problem on the Dean velocity, shear stresses and Dean vortices is discussed with the aid of graphs. It is found that maximum Dean velocity is due to an exponentially growing time-dependent pressure gradient and slip wall coefficient. Stability of the Dean vortices is achieved by suppressing time, wall slippage and inducing an exponentially decaying time-dependent pressure gradient.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1796
Author(s):  
Muhammad Zia Ullah Khan ◽  
Emad Uddin ◽  
Bilal Akbar ◽  
Naveed Akram ◽  
Ali Ammar Naqvi ◽  
...  

A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35–300 μm for Reynolds number and base temperature magnitude range of 100–1000 and 320–370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 μm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
P. Kováts ◽  
C. Velten ◽  
M. Mansour ◽  
D. Thévenin ◽  
K. Zähringer

AbstractFlow Mixing of two miscible liquids has been characterized experimentally in three different helically coiled reactor configurations of two different lengths in the laminar flow regime at Re = 50…1000. A straight helical coil, a coiled flow inverter, and a new coiled flow reverser have been built, each in a 3-turn and a 6-turn configuration. Laser-induced fluorescence of resorufin has been used to visualize and quantify mixing in cross-sections throughout the reactors. A mixing coefficient is derived from the fluorescence images to allow for a quantitative measure and comparison of the six configurations. It becomes obvious from these experimental results, that an early flow redirection in the helical configuration is beneficial to mixing. The 3-turn reactors achieve nearly the same mixing coefficients as the 6-turn reactors with the double length. This can be explained by the stabilizing effect of the Dean vortices in the helix, which develop during the first two turns. After that, the liquid is trapped inside the vortices and further mixing is inhibited. Accordingly, the coiled flow inverter and coiled flow reverser configurations lead to much higher mixing coefficients than the straight helical coil. The results of these measurements are now used for validation of numerical simulations, which reproduce the geometrical and flow conditions of the experiments. Some exemplary results of these calculations are also shown in this article. Graphic abstract Mass fractions of tracer fluid at Re = 500 in the six examined helix configurations.


2020 ◽  
Vol 603 ◽  
pp. 118008 ◽  
Author(s):  
Xin Liu ◽  
Dongyu Du ◽  
Guoquan Tu ◽  
Weiyi Li

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Yuan Tang ◽  
Dan Zi ◽  
Lihua Xie ◽  
...  

Abstract A remarkable flow deviation phenomenon exists in the S-shaped discharge passage of a slanted axial-flow pumping system. In order to reveal the characteristics and development process of the deviating flow, numerical simulation was performed for a 15 deg slanted axial-flow pumping system, and the deviating flow was measured on an experimental rig. The details of the deviating flow in the S-shaped discharge passage were obtained. A kind of “unwinding” flow structure similar to that of DNA in biology is found in the S-shaped passage. The special structure is characterized by a “single strand” in which original helical streamlines are almost straightened. The bulk speed of the fluids on the “single strand” on the left side of the passage significantly increases while the swirling strength and the kinetic pressure ratio decrease. Large-scale Dean vortices at the passage bottom interact with high transverse energy gradient fluids at the passage top as water flows into the convex part of the S-shaped passage, which leads to the emergence of the “unwinding” structure. Reverse secondary flows further enlarge the scale of the Dean vortices as water flows into the concave part of the S-shaped passage, which results in the growth of the “unwinding” structure. With the development of the asymmetrical flow structure, an irreversible severe flow deviation problem naturally comes into being.


Sign in / Sign up

Export Citation Format

Share Document