scholarly journals MiR495- and miR551a-mediated down-regulation of PRL-3 expression inhibits peritoneal metastasis in a mouse model of gastric cancer

2013 ◽  
Vol 21 (18) ◽  
pp. 1693
Author(s):  
Mu Xu ◽  
Yi Cao ◽  
Meng-Meng Jiang ◽  
Zhi-Gang Jie ◽  
Zheng-Rong Li
2020 ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. MethodsImmuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with a-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry.ResultsThe number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P<0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P=0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P<0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P=0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P<0.05, P<0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression.ConclusionsThis model is the first immunocompetent mouse model similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. Methods Immuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6 J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with α-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry. Results The number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P < 0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P = 0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P < 0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P = 0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P < 0.05, P < 0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression. Conclusions This model is the first immunocompetent mouse model similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


2020 ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. MethodsImmuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with a-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry.ResultsThe number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P<0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P=0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P<0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P=0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P<0.05, P<0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression.ConclusionsThis model is the first immunocompetent mouse model to accurately reflect the TME of human clinical PM. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


2020 ◽  
Author(s):  
Daisuke Fujimori ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Yusuke Nakamura ◽  
Katsuya Gunjigake ◽  
...  

Abstract Background Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. Methods Immuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with a-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry.Results The number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P<0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P=0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P<0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P=0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P<0.05, P<0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression.Conclusions This model is the first immunocompetent mouse model to accurately reflect the similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


2019 ◽  
Vol 10 (12) ◽  
pp. 2811-2821 ◽  
Author(s):  
Ruihuan Qin ◽  
Yupeng Yang ◽  
Wenjun Qin ◽  
Jing Han ◽  
Hao Chen ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Zhongyin Yang ◽  
Chao Yan ◽  
Wentao Liu ◽  
Wei Xu ◽  
Chen Li ◽  
...  

BACKGROUND: Gastric cancer (GC) patients with peritoneal metastasis usually have extremely poor prognosis. Intraperitoneal infusion of paclitaxel (PTX) provides an effective treatment, but relapse and PTX-resistance are unavoidable disadvantages, and it is difficult to monitor the occurrence of PTX-resistance. OBJECTIVE: The aim of this study was to explore novel autoantibodies in the ascites of individuals with relapsed PTX-resistant GC with peritoneal metastasis. METHODS: Ascites samples were collected before PTX infusion and after the relapse in 3 GC patients. To determine the expression of significantly changed proteins, we performed autoantibody profiling with immunome protein microarrays and tandem mass tag (TMT) quantitative proteomics, and then, the overlapping proteins were selected. RESULTS: Thirty-eight autoantibodies that were differentially expressed between the ascites in the untreated group and relapsed PTX-resistant group were identified. For confirmation of the results, TMT quantitative proteomics was performed, and 842 dysregulated proteins were identified. Four proteins, TPM3, EFHD2, KRT19 and vimentin, overlapped between these two assays. CONCLUSIONS: Our results first revealed that TPM3, EFHD2, KRT19 and vimentin were novel autoantibodies in the ascites of relapsed PTX-resistant GC patients. These autoantibodies may be used as potential biomarkers to monitor the occurrence of PTX-resistance.


Sign in / Sign up

Export Citation Format

Share Document