scholarly journals The Novel Sequence-Specific DNA Cross-Linking Agent SJG-136 (NSC 694501) Has Potent and Selective In vitro Cytotoxicity in Human B-Cell Chronic Lymphocytic Leukemia Cells with Evidence of a p53-Independent Mechanism of Cell Kill

2004 ◽  
Vol 64 (18) ◽  
pp. 6750-6755 ◽  
Author(s):  
Christopher J. Pepper ◽  
Rachel M. Hambly ◽  
Christopher D. Fegan ◽  
Patrick Delavault ◽  
David E. Thurston
Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2297-2304 ◽  
Author(s):  
T Mainou-Fowler ◽  
VA Craig ◽  
JA Copplestone ◽  
MD Hamon ◽  
AG Prentice

Abstract During hematopoiesis, viability factors that suppress apoptosis are required throughout the differentiation process. Some of these factors may also function as growth factors. Interleukin-5 (IL-5) is recognized as a growth factor in hematopoiesis. We examined the involvement of IL- 5 as a viability factor of B-CLL in vitro. In 13 B-CLL cases studied, IL-5 at 20 U/mL increased spontaneous apoptosis by a mean percentage of 53% (range, 20% to 129%) (P < .05) after 2 days in culture. On the third day, the mean percentage increase was 37% (range, 18% to 50%). In all cases, IL-4 protected B-CLL cells against IL-5-induced apoptosis by a mean percentage of 47% (range, 18% to 81%) (P < .001). This protection was specific to IL-4 and it was reduced with anti-IL-4 antibody. In addition, expression of bcl-2 protein in untreated cultures was not significantly different from that of the IL-5-treated cells; mean equivalent of soluble fluorochrome (MESF) was 5.2 (range, 3.0 to 6.8) and 4.9 (range, 3.0 to 6.3), respectively (P > .2). In freshly isolated B-CLL cells, the MESF was 4.5 (range, 2.4 to 6.6). These results show that IL-5 induced apoptosis in B-CLL cells by a pathway that is independent of bcl-2 expression. IL-4 partially protects against this effect.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2297-2304 ◽  
Author(s):  
T Mainou-Fowler ◽  
VA Craig ◽  
JA Copplestone ◽  
MD Hamon ◽  
AG Prentice

During hematopoiesis, viability factors that suppress apoptosis are required throughout the differentiation process. Some of these factors may also function as growth factors. Interleukin-5 (IL-5) is recognized as a growth factor in hematopoiesis. We examined the involvement of IL- 5 as a viability factor of B-CLL in vitro. In 13 B-CLL cases studied, IL-5 at 20 U/mL increased spontaneous apoptosis by a mean percentage of 53% (range, 20% to 129%) (P < .05) after 2 days in culture. On the third day, the mean percentage increase was 37% (range, 18% to 50%). In all cases, IL-4 protected B-CLL cells against IL-5-induced apoptosis by a mean percentage of 47% (range, 18% to 81%) (P < .001). This protection was specific to IL-4 and it was reduced with anti-IL-4 antibody. In addition, expression of bcl-2 protein in untreated cultures was not significantly different from that of the IL-5-treated cells; mean equivalent of soluble fluorochrome (MESF) was 5.2 (range, 3.0 to 6.8) and 4.9 (range, 3.0 to 6.3), respectively (P > .2). In freshly isolated B-CLL cells, the MESF was 4.5 (range, 2.4 to 6.6). These results show that IL-5 induced apoptosis in B-CLL cells by a pathway that is independent of bcl-2 expression. IL-4 partially protects against this effect.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1199-1206 ◽  
Author(s):  
Simona Zupo ◽  
Rosanna Massara ◽  
Mariella Dono ◽  
Edoardo Rossi ◽  
Fabio Malavasi ◽  
...  

Previously, we demonstrated that B-chronic lymphocytic leukemia (B-CLL) cells could be divided into 2 groups depending on the expression of CD38 by the malignant cells. The 2 groups differed in their signal-transducing capacities initiated by cross-linking of surface IgM; only in CD38-positive cells was an efficient signal delivered, invariably resulting in cell apoptosis. In this study, we investigated the effect of surface IgD cross-linking in 10 patients with CD38-positive B-CLL. Exposure of the malignant cells to goat antihuman δ-chain antibodies (Gaδ-ab) caused [Ca++]i mobilization and tyrosine kinase phosphorylation in a manner not different from that observed after goat antihuman μ-chain antibody (Gaμ-ab) treatment in vitro. However, Gaδ-ab-treated cells failed to undergo apoptosis and instead displayed prolonged survival in culture and differentiated into plasma cells when rIL2 was concomitantly present. Cross-linking of surface IgD failed to induce proliferation of the malignant cells in vitro. Moreover, treatment with Gaδ-ab did not prevent apoptosis of B-CLL cells induced by Gaμ-ab. Collectively, these experiments demonstrated that IgM and IgD expressed by the same cell may deliver opposite signals under particular circumstances and provide some clues for the understanding of the pathophysiology of B-CLL.


2005 ◽  
Vol 29 (7) ◽  
pp. 829-839 ◽  
Author(s):  
Emanuela Rosati ◽  
Rita Sabatini ◽  
Antonio Tabilio ◽  
Mauro Di Ianni ◽  
Andrea Bartoli ◽  
...  

2001 ◽  
Vol 25 (6) ◽  
pp. 435-440 ◽  
Author(s):  
Jamie K Waselenko ◽  
Michael R Grever ◽  
Charlotte A Shinn ◽  
Ian W Flinn ◽  
John C Byrd

Sign in / Sign up

Export Citation Format

Share Document