scholarly journals Cyclophosphamide Inhibition of Anti-CD40 Monoclonal Antibody–Based Therapy of B Cell Lymphoma Is Dependent on CD11b+ Cells

2005 ◽  
Vol 65 (16) ◽  
pp. 7493-7501 ◽  
Author(s):  
Jamie Honeychurch ◽  
Martin J. Glennie ◽  
Timothy M. Illidge
Author(s):  
Monica Balzarotti ◽  
Massimo Magagnoli ◽  
Miguel Ángel Canales ◽  
Paolo Corradini ◽  
Carlos Grande ◽  
...  

SummaryBackground BI 836826 is a chimeric mouse–human monoclonal antibody directed against human CD37, a transmembrane protein expressed on mature B lymphocytes. This open-label, phase I dose-escalation trial (NCT02624492) was conducted to determine the maximum tolerated dose (MTD), safety/tolerability, and preliminary efficacy of BI 836826 in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Methods Eligible patients received intravenous infusions of BI 836826 on day 8 and gemcitabine 1000 mg/m2 plus oxaliplatin 100 mg/m2 on day 1, for up to six 14-day treatment cycles. Dose escalation followed the standard 3 + 3 design. Results Of 21 treated patients, 17 had relapsed/refractory DLBCL and four had follicular lymphoma transformed to DLBCL. BI 836826 dosing started at 25 mg and proceeded through 50 mg and 100 mg. Two dose-limiting toxicities (DLTs) occurred during cycle 1, both grade 4 thrombocytopenia lasting > 7 days, affecting 1/6 evaluable patients (17%) in both the 50 mg and 100 mg cohorts. Due to early termination of the study, the MTD was not determined. The most common adverse events related to BI 836826 treatment were neutropenia (52%), thrombocytopenia (48%), and anemia (48%). Eight patients (38%) experienced BI 836826-related infusion-related reactions (two grade 3). Overall objective response rate was 38%, including two patients (10%) with complete remission and six patients (29%) with partial remission. Conclusions BI 836826 in combination with GemOx was generally well tolerated but did not exceed the MTD at doses up to 100 mg given every 14 days.


2005 ◽  
Vol 44 (11) ◽  
pp. 976-978 ◽  
Author(s):  
Constanze Voigtlander ◽  
Thomas Harrer ◽  
Lothar Schneider ◽  
Hendrik Schulze-Koops ◽  
Gerald Niedobitek ◽  
...  

1991 ◽  
Vol 32 (6) ◽  
pp. 364-372 ◽  
Author(s):  
A. Hekman ◽  
A. Honselaar ◽  
W. M. J. Vuist ◽  
J. J. Sein ◽  
S. Rodenhuis ◽  
...  

1997 ◽  
Vol 12 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Aicha Demidem ◽  
Tammy Lam ◽  
Steve Alas ◽  
Kandasamy Hariharan ◽  
Nabil Hanna ◽  
...  

Leukemia ◽  
2001 ◽  
Vol 15 (10) ◽  
pp. 1667-1667
Author(s):  
T Oyama ◽  
Y Kagami ◽  
M Seto ◽  
Y Morishima

1992 ◽  
Vol 17 (6) ◽  
pp. 525
Author(s):  
V. Vijayakumar ◽  
M. J. Blend ◽  
C. Bekerman ◽  
M. Kozloff ◽  
R. H. Seevers ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 886-886 ◽  
Author(s):  
Lapo Alinari ◽  
Erin Hertlein ◽  
David M. Goldenberg ◽  
Rosa Lapalombella ◽  
Fengting Yan ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an incurable B-cell malignancy and patients with this disease have limited therapeutic options. Despite the success of Rituximab in treatment of B-cell malignancies, its use as a single agent or in combination with chemotherapy in MCL has demonstrated modest activity; thus, novel strategies are needed. CD74 is an integral membrane protein expressed on malignant B cells and implicated in promoting survival and growth, making it an attractive therapeutic target. The humanized anti-CD74 monoclonal antibody (mAb), Milatuzumab, (Immunomedics) has shown promising preclinical activity against several human B-cell lymphoma cell lines, but has not been studied in MCL. Since Rituximab and Milatuzumab target distinct antigens lacking known association, we explored a combination strategy with these mAbs in MCL cell lines, patient samples, and in a preclinical model of MCL. Flow cytometric analysis shows that the MCL cell lines Mino and JeKo, and MCL patient tumor cells, express abundant surface CD74 compared to the CD74-negative cell line, Jurkat. Incubation of Mino and JeKo cells with immobilized (goat anti-human IgG) Milatuzumab (5 μg/ml) resulted in mitochondrial depolarization and significant induction of apoptosis determined by Annexin V/PI and flow cytometry (apoptosis at 8hr=38.3±0.85% and 25.4±2.6%; 24hr=73.6±3.47% and 36±3.57%; 48hr=84.9±3.91% and 50.4±4.17%, respectively, compared to Trastuzumab (control). Expression of surviving cells from anti-CD74-treated MCL cells consistently demonstrated marked induction of surface CD74 (MFI 762) compared to control (MFI 6.1). Incubation with immobilized Rituximab (10 μg/ml) resulted in 39.5±2.5% and 37.1±8.35% apoptotic events at 8hr, 58.8±3.14%, 41.2±8.27% at 24hr, and 40.1±1.3% and 45.6±3.25% at 48hr, respectively. Combination treatment of Mino and JeKo cells with Milatuzumab and Rituximab led to significant enhancement in cell death, with 77.6±3.95% and 79.6±2.62% apoptosis at 8hr in Jeko and Mino cells (P=0.0008 and P=0.00004 vs. Milatuzumab alone; P=0.00015 and P=0.001 vs. Rituximab alone); 90.4±3.53% and 76.6±4.3% at 24hr, respectively (P=0.0042 and P=0.0002 vs. Milatuzumab, P=0.0003 and P=0.0027 vs. Rituximab alone); 92.8±0.77% and 85.6±2.62% at 48hr, respectively (P= 0.026 and P=0.0002 vs. Milatuzumab alone, P=0.0000005 and P=0.00008 compared to Rituximab alone, respectively). To examine the in vivo activity of Rituximab and Milatuzumab, a preclinical model of human MCL using the SCID (cb17 scid/scid) mouse depleted of NK cells with TMβ1 mAb (anti-murine IL2Rb) was used. In this model, intravenous injection of 40×106 JeKo cells results in disseminated MCL 3–4 weeks after engraftment. The primary end-point was survival, defined as the time to develop cachexia/wasting syndrome or hind limb paralysis. Mice were treated starting at day 17 postengraftment with intraperitoneal Trastuzumab mAb control (300 μg qod), Milatuzumab (300 μg qod), Rituximab (300 μg qod), or a combination of Milatuzumab and Rituximab. The mean survival for the combination-treated group was 55 days (95%CI:41, upper limit not reached as study was terminated at day 70), compared to 33 days for Trastuzumab-treated mice (95% CI:31,34), 35.5 days for the Milatuzumab-treated mice (95% CI:33,37), and 45 days for the Rituximab-treated mice (95%CI:30,46). The combination treatment prolonged survival of this group compared to Trastuzumab control (P=0.001), Milatuzumab (P=0.0006) and Rituximab (P=0.098). No overt toxicity from Milatuzumab or the combination regimen was noted. A confirmatory study with a larger group of mice and detailed mechanistic studies are now underway. These preliminary results provide justification for further evaluation of Milatuzumab and Rituximab in combination in MCL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 724-724
Author(s):  
Fuliang Chu ◽  
Myriam Foglietta ◽  
Hong Qin ◽  
Rakesh Sharma ◽  
Qing Yi ◽  
...  

Abstract Abstract 724 Background: Programmed death (PD)–1 is an inhibitory receptor that impairs the function of activated T-cells and natural killer (NK) cells when engaged by its ligands PD-L1 or PD-L2. We have previously demonstrated that PD-1 is markedly up-regulated in intratumoral and peripheral blood CD4+ and CD8+ T cells in patients with follicular lymphoma (FL), a finding associated with impaired T-cell function, suggesting that PD-1 blockade may improve FL immune control. CT-011, a humanized anti PD-1 monoclonal antibody, was previously studied in a phase I clinical trial in patients with advanced hematological malignancies. CT-011 was well tolerated and induced sustained elevations of CD4+ T cells in the peripheral blood. More importantly, apparent clinical benefit was observed in six patients, including one patient with FL who had large tumor masses that achieved a durable complete remission lasting >14 months. Here, we studied the in vitro and in vivo effects of CT-011 on T-cell and/or NK-cell immune responses against human B-cell lymphoma and the hypothesis that CT-011 may improve tumor control when combined with rituximab, a chimeric anti-CD20 monoclonal antibody for the treatment of human FL. Materials and Methods: To determine the effects of CT-011 on antitumor T cells, intratumoral T cells were isolated from primary FL tumor samples, and cultured with or without autologous tumor cells in the presence or absence of CT-011 or isotype control antibody (50 μg/ml each) for 5 days, and tested for proliferation by 3H thymidine incorporation assay. To determine the effects of CT-011 on NK cells, peripheral blood mononuclear cells (PBMCs) derived from normal donors or patients with FL were cultured in the presence or absence of CT-011 (50 μg/ml) with or without IL-2 for 96 hours and analyzed for expression of various activating receptors including CD16, CD32, CD64, Fas ligand, NKG2D, NKp30, NKp44, and NKp46. The in vivo effects of CT-011 were tested in two B-cell lymphoma xenograft models. Ramos and RL lymphoma tumor cells were injected subcutaneously into nude and SCID mice, respectively, and CT-011 (10 μg/mouse) was injected weekly with or without rituximab starting approximately 7–10 days after tumor inoculation. Results: We observed that CT-011 significantly increased the proliferation of intratumoral T cells in response to autologous tumor cells compared with isotype control antibody. Treatment with CT-011 enhanced the expression of Fas ligand, CD32, CD64, and NKp30 on human NK cells in the presence of IL-2 as compared with PBMCs treated with IL-2 alone or media control. In the RL lymphoma xenograft model in SCID mice, treatment with CT-011 significantly delayed tumor growth (P≤0.05) and improved survival (P≤0.01) compared with control mice injected with saline. In a Ramos lymphoma xenograft model in nude mice, treatment with CT-011 and rituximab eradicated established tumors in a significant proportion of mice (P≤0.05) and markedly improved survival compared with rituximab alone or saline. Conclusions: Taken together, these studies suggest that blockade of PD-1 with CT-011 enhances the function of anti-tumor T-cells and augments the expression of activating receptors on NK cells. Treatment with CT-011 led to improved tumor control against human B-cell lymphoma in xenograft models and the combined use of CT-011 and rituximab was more effective that rituximab alone. These results provide the rationale to test the combination of CT-011 with rituximab in patients with B-cell lymphoma, given that the combination is likely to be complementary and may even be synergistic, leading to enhanced clinical efficacy without increasing toxicity. The development of such approaches that activate both the innate (NK-cells) and adaptive (T-cells) immune systems is likely to minimize the emergence of immune escape variants and improve clinical outcome in patients with lymphoma. A clinical trial evaluating CT-011 in combination with rituximab is planned in patients with relapsed FL. Disclosures: Rodionov: Cure Tech Ltd.: Employment. Rotem-Yehudar:Cure Tech Ltd.: Employment.


Sign in / Sign up

Export Citation Format

Share Document