scholarly journals Role of Tumor Necrosis Factor-  and TRAIL in High-Dose Radiation Induced Bystander Signaling in Lung Adenocarcinoma

2007 ◽  
Vol 67 (24) ◽  
pp. 11811-11820 ◽  
Author(s):  
M. M. Shareef ◽  
N. Cui ◽  
R. Burikhanov ◽  
S. Gupta ◽  
S. Satishkumar ◽  
...  
2003 ◽  
Vol 23 (18) ◽  
pp. 6609-6617 ◽  
Author(s):  
Robert Endres ◽  
Georg Häcker ◽  
Inge Brosch ◽  
Klaus Pfeffer

ABSTRACT The silencer of death domains (SODD) has been proposed to prevent constitutive signaling of tumor necrosis factor receptor 1 (TNFR1) in the absence of ligand. Besides TNFR1, death receptor 3 (DR3), Hsp70/Hsc70, and Bcl-2 have been characterized as binding partners of SODD. In order to investigate the in vivo role of SODD, we generated mice congenitally deficient in expression of the sodd gene. No spontaneous inflammatory infiltrations were observed in any organ of these mice. Consistent with this finding, in the absence of SODD no alteration in the activation patterns of nuclear factor κB (NF-κB), stress kinases, or ERK1 or -2 was observed after stimulation with tumor necrosis factor (TNF). Activation of NF-κB by DR3 was also unchanged. The extents of DR3- and TNF-induced apoptosis were comparable in gene-deficient and wild-type cells. Protection of cells against heat shock as mediated by the Hsp70 system and against staurosporine-induced apoptosis was independent of SODD. Furthermore, resistance to high-dose lipopolysaccharide (LPS) injections, LPS-d-GalN injections, and infection with listeriae was similar in wild-type and gene-deficient mice. In conclusion, our data do not support the concept of a unique, nonredundant role of SODD for the functions of TNFR1, Hsp70, and DR3.


1992 ◽  
Vol 175 (3) ◽  
pp. 689-694 ◽  
Author(s):  
R Neta ◽  
R Perlstein ◽  
S N Vogel ◽  
G D Ledney ◽  
J Abrams

Primary responsibility for the induction of various acute phase reactions has been ascribed to interleukin 1 (IL-1), tumor necrosis factor (TNF), or IL-6, suggesting that these cytokines may have many overlapping activities. Thus, it is difficult to identify the cytokine primarily responsible for a particular biologic effect, since IL-1 and TNF stimulate one another, and both IL-1 and TNF stimulate IL-6. In this work, the contribution of IL-6 in radioprotection, induction of adrenocorticotropic hormone (ACTH), and induction of hypoglycemia was assessed by blocking IL-6 activity. Administration of anti-IL-6 antibody to otherwise untreated mice greatly enhanced the incidence of radiation-induced mortality, indicating that like IL-1 and TNF, IL-6 also contributes to innate resistance to radiation. Anti-IL-6 antibody given to IL-1-treated or TNF-treated mice reduced survival from lethal irradiation, demonstrating that IL-6 is also an important mediator of both IL-1- and TNF-induced hemopoietic recovery. A similar IL-1/IL-6 interaction was observed in the case of ACTH induction. Anti-IL-6 antibody blocked the IL-1-induced increase in plasma ACTH, whereas recombinant IL-6 by itself did not induce such an increase. Anti-IL-6 antibody also mitigated TNF-induced hypoglycemia, but did not reverse IL-1-induced hypoglycemia. It is, therefore, likely that TNF and IL-1 differ in their mode of induction of hypoglycemia. Our results suggest that an interaction of IL-6 with IL-1 and TNF is a prerequisite for protection from radiation lethality, and its interaction with IL-1 for induction of ACTH.


2002 ◽  
Vol 27 (4) ◽  
pp. 396-405 ◽  
Author(s):  
Joanna M. Matheson ◽  
Ranulfo Lemus ◽  
Robert W. Lange ◽  
Meryl H. Karol ◽  
Michael I. Luster

Sign in / Sign up

Export Citation Format

Share Document