scholarly journals Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer

2020 ◽  
Vol 80 (19) ◽  
pp. 4233-4243 ◽  
Author(s):  
Aphrothiti J. Hanrahan ◽  
Brooke E. Sylvester ◽  
Matthew T. Chang ◽  
Arijh Elzein ◽  
Jianjiong Gao ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 206
Author(s):  
Md Bashir Uddin ◽  
S.M. Bayejed Hossain ◽  
Mahmudul Hasan ◽  
Mohammad Nurul Alam ◽  
Mita Debnath ◽  
...  

Colistin (polymyxin E) is widely used in animal and human medicine and is increasingly used as one of the last-resort antibiotics against Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant Gram-negative bacteria, resistance to this antibiotic ought to be monitored. The study was undertaken to elucidate the molecular mechanisms, genetic relationships and phenotype correlations of colistin-resistant isolates. Here, we report the detection of the mcr-1 gene in chicken-associated Salmonella isolates in Bangladesh and its in-silico functional analysis. Out of 100 samples, 82 Salmonella spp. were isolated from chicken specimens (liver, intestine). Phenotypic disc diffusion and minimum inhibitory concentration (MIC) assay using different antimicrobial agents were performed. Salmonella isolates were characterized using PCR methods targeting genus-specific invA and mcr-1 genes with validation for the functional analysis. The majority of the tested Salmonella isolates were found resistant to colistin (92.68%), ciprofloxacin (73.17%), tigecycline (62.20%) and trimethoprim/sulfamethoxazole (60.98%). When screened using PCR, five out of ten Salmonella isolates were found to carry the mcr-1 gene. One isolate was confirmed for Salmonella enterica subsp. enterica serovar Enteritidis, and other four isolates were confirmed for Salmonella enterica subsp. enterica serovar Typhimurium. Sequencing and phylogenetic analysis revealed a divergent evolutionary relationship between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, rendering them resistant to colistin. Three-dimensional homology structural analysis of MCR-1 proteins and molecular docking interactions suggested that MCR-1 and LptA share a similar substrate binding cavity, which could be validated for the functional analysis. The comprehensive molecular and in-silico analyses of the colistin resistance mcr-1 gene of Salmonella spp. of chicken origin in the present study highlight the importance of continued monitoring and surveillance for antimicrobial resistance among pathogens in food chain animals.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Evangelina López de Maturana ◽  
◽  
Juan Antonio Rodríguez ◽  
Lola Alonso ◽  
Oscar Lao ◽  
...  

Abstract Background Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. Methods We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. Results We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E−06 in 1D approach and a Local Moran’s Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8—a lncRNA associated with pancreatic carcinogenesis—with a lowest p value = 6.91E−05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1—a major regulator of the ER stress and unfolded protein responses in acinar cells—identified by 3D; all of them with a strong in silico functional support. Conclusions This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.


2019 ◽  
Vol 37 (3) ◽  
pp. 146-156 ◽  
Author(s):  
Muthulakshmi Chellamuthu ◽  
Kanimozhi Kumaresan ◽  
Selvi Subramanian ◽  
Hemashree Muthumanickam

2017 ◽  
Vol 68 ◽  
pp. 12-21 ◽  
Author(s):  
Krishnendu Pramanik ◽  
Tithi Soren ◽  
Soumik Mitra ◽  
Tushar Kanti Maiti

2019 ◽  
Author(s):  
Laura M Carroll ◽  
Ahmed Gaballa ◽  
Claudia Guldimann ◽  
Genevieve Sullivan ◽  
Lory O Henderson ◽  
...  

Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue, detected in a Salmonella enterica serotype Typhimurium (S. Typhimurium) genome using an in silico approach, followed by experimental functional analysis. The amino acid sequence of mcr-9, detected in a multidrug resistant (MDR) S. Typhimurium strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using translated nucleotide blast. The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2 mg/L European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. To determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host, mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG-induced promoter. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/L colistin, albeit at a lower level when compared to mcr-3. Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, and Mcr-7 share a high degree of similarity at the structural level. The results of our approach indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance. Importance: Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a Highest Priority Critically Important Antimicrobial for human medicine (WHO, Critically Important Antimicrobials for Human Medicine, 5th Revision, 2017), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.


PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0222747 ◽  
Author(s):  
Geleta Dugassa Barka ◽  
Eveline Teixeira Caixeta ◽  
Sávio Siqueira Ferreira ◽  
Laércio Zambolim

Sign in / Sign up

Export Citation Format

Share Document