Critical Role of a Transcription Elongation Regulator in Mammary Gland Development and Mammary Tumorigenesis.

Author(s):  
S. Nair ◽  
R. Li
Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


2009 ◽  
Vol 29 (16) ◽  
pp. 4455-4466 ◽  
Author(s):  
Sarah M. Francis ◽  
Jacqueline Bergsied ◽  
Christian E. Isaac ◽  
Courtney H. Coschi ◽  
Alison L. Martens ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) is a crucial mediator of breast development, and loss of TGF-β-induced growth arrest is a hallmark of breast cancer. TGF-β has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-β cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1 ΔL and Rb1NF ), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-β growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-β signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-β cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-β in growth control and mammary gland development.


2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document