Whole Genome Profiling of Formalin-Fixed, Paraffin-Embedded Tissue Distinguishes HER2-Positive and -Negative Breast Tumors.

Author(s):  
M. Reinholz ◽  
J. Eckel-Passow ◽  
K. Anderson ◽  
A. McCullough ◽  
C. April ◽  
...  
2010 ◽  
Vol 203 (1) ◽  
pp. 61
Author(s):  
Vanja de Weerd ◽  
Anieta M. Sieuwerts ◽  
Raquel Ramírez-Moreno ◽  
Renée Foekens ◽  
Mieke Timmermans ◽  
...  

2005 ◽  
Vol 26 (4) ◽  
pp. 384-389 ◽  
Author(s):  
Ella R. Thompson ◽  
Shane C. Herbert ◽  
Susan M. Forrest ◽  
Ian G. Campbell

ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nona Arneson ◽  
Juan Moreno ◽  
Vladimir Iakovlev ◽  
Arezou Ghazani ◽  
Keisha Warren ◽  
...  

To understand cancer progression, it is desirable to study the earliest stages of its development, which are often microscopic lesions. Array comparative genomic hybridization (aCGH) is a valuable high-throughput molecular approach for discovering DNA copy number changes; however, it requires a relatively large amount of DNA, which is difficult to obtain from microdissected lesions. Whole genome amplification (WGA) methods were developed to increase DNA quantity; however their reproducibility, fidelity, and suitability for formalin-fixed paraffin-embedded (FFPE) samples are questioned. Using aCGH analysis, we compared two widely used approaches for WGA: single cell comparative genomic hybridization protocol (SCOMP) and degenerate oligonucleotide primed PCR (DOP-PCR). Cancer cell line and microdissected FFPE breast cancer DNA samples were amplified by the two WGA methods and subjected to aCGH. The genomic profiles of amplified DNA were compared with those of non-amplified controls by four analytic methods and validated by quantitative PCR (Q-PCR). We found that SCOMP-amplified samples had close similarity to non-amplified controls with concordance rates close to those of reference tests, while DOP-amplified samples had a statistically significant amount of changes. SCOMP is able to amplify small amounts of DNA extracted from FFPE samples and provides quality of aCGH data similar to non-amplified samples.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Emily A Saunderson ◽  
Ann-Marie Baker ◽  
Marc Williams ◽  
Kit Curtius ◽  
J Louise Jones ◽  
...  

Abstract The desire to analyse limited amounts of biological material, historic samples and rare cell populations has collectively driven the need for efficient methods for whole genome sequencing (WGS) of limited amounts of poor quality DNA. Most protocols are designed to recover double-stranded DNA (dsDNA) by ligating sequencing adaptors to dsDNA with or without subsequent polymerase chain reaction amplification of the library. While this is sufficient for many applications, limited DNA requires a method that can recover both single-stranded DNA (ssDNA) and dsDNA. Here, we present a WGS library preparation method, called ‘degraded DNA adaptor tagging’ (DDAT), adapted from a protocol designed for whole genome bisulfite sequencing. This method uses two rounds of random primer extension to recover both ssDNA and dsDNA. We show that by using DDAT we can generate WGS data from formalin-fixed paraffin-embedded (FFPE) samples using as little as 2 ng of highly degraded DNA input. Furthermore, DDAT WGS data quality was higher for all FFPE samples tested compared to data produced using a standard WGS library preparation method. Therefore, the DDAT method has potential to unlock WGS data from DNA previously considered impossible to sequence, broadening opportunities to understand the role of genetics in health and disease.


Sign in / Sign up

Export Citation Format

Share Document