ffpe samples
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 173)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
pp. 15-23
Author(s):  
Antonino Iaccarino ◽  
Gennaro Acanfora ◽  
Pasquale Pisapia ◽  
Umberto Malapelle ◽  
Claudio Bellevicine ◽  
...  

Generally, predictive biomarker tests are clinically validated on histological formalin-fixed, paraffin-embedded (FFPE) samples. In addition to FFPE samples, cytological samples have also emerged as a useful approach to detect predictive biomarkers. However, as of today, despite the promising results reported in the recent literature, their full implementation in routine clinical practice is still lagging owing to a lack of standardized preparatory protocols, challenging assessments of cyto-histological correlation, and variable inter-observer agreement. The aim of this report was to explore the possibility of implementing a large-scale validation of predictive biomarker testing on cytological material. To this aim, we evaluated the technical feasibility of PD-L1 assessment on a cell block (CB)-derived tissue microarray (cbTMA). Consecutive and unselected CBs prepared from metastatic lymph node fine-needle cytology (FNC) samples were retrospectively collected and used for TMA construction. PD-L1 immunohistochemistry (IHC) was carried out on cbTMA sections with the companion diagnostic kit SP263 assay. TMA contained 33 CB-derived cores. A total of 20 sections were hematoxylin and eosin (H&E) stained. Overall, 29 (88%) samples were visible at least in one H&E-stained slide. Four cases out of five sections stained with the SP263 assay (4/29, 13.8%) showed PD-L1 positivity in neoplastic and/or immune cells; remarkably, no unspecific background was observed. Although our study was based on a limited and non-selected series, our findings do provide proof of concept for the use of cbTMA in predictive biomarker testing on cytological material in large-scale post-clinical trial validation studies, multicenter studies, and quality control programs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Raul Leal Faria Luiz ◽  
Rodrigo Caldas Menezes ◽  
Sandro Antonio Pereira ◽  
Raquel de Vasconcellos Carvalhaes de Oliveira ◽  
Manoel Marques Evangelista Oliveira

Sporotrichosis is a chronic, cosmopolitan granulomatous mycosis that affects humans and animals. The infection is caused by the dimorphic fungi Sporothrix sp. The aims of the present study were to evaluate, standardize and validate a nested PCR technique using two DNA purification kits for the extraction of DNA from formalin fixed and paraffin-embedded tissues (FFPE) for Sporothrix sp. detection. FFPE mycological culture pellet samples of different Sporothrix species (S. chilensis, S. mexicana, S. pallida, S. globosa, S. brasiliensis and S. schenckii) were used as positive controls and clinical FFPE tissue samples of animals positive for Cryptococcus sp., Leishmania infantum and Histoplasma sp. were used as negative controls. Ten clinical FFPE skin samples from cats with sporotrichosis were used to validate the nested PCR. These samples were cut into two distinct paraffin sectioning protocols (5 and 16 μm thick). The paraffin sections were subjected to two different DNA extraction kits (chemical and thermal extractions). A nested PCR was performed on the extracted DNA to identify the genus Sporothrix. The chemical extraction protocol with the 5 μm thick paraffin section was more effective in extracting DNA from Sporothrix sp. from FFPE samples and the nested PCR technique showed the highest sensitivities (100% in the positive controls and of 50% in the skin samples of cats) and specificity (100%). Therefore, the nested PCR using this protocol has great potential to be applied in Sporothrix sp. diagnosis in FFPE samples of cats.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6105
Author(s):  
Leticia Szadai ◽  
Erika Velasquez ◽  
Beáta Szeitz ◽  
Natália Pinto de Almeida ◽  
Gilberto Domont ◽  
...  

The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort’s heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient’s response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.


2021 ◽  
Author(s):  
Lingling Li ◽  
Hui Liu ◽  
Yan Li ◽  
Chunmei Guo ◽  
Bing Wang ◽  
...  

Abstract Background The surveillance and therapy of early-stage cancer would be better for patients’ prognosis. However, the extreme trace amount of tissue samples in different stages have limited in portraying the characterization of early-stage cancer. Therefore, we focused on and presented comprehensive proteomic and phosphoproproteomic profiling of the trace FFPE samples from early-stage gastrointestinal cancer, and then explored the potential biomarkers of early-stage gastrointestinal cancer. Methods In this study, a quantitative proteomic method with chromatography with mass spectrometry (LC-MS/MS) was used to analyse the proteomic difference between the trace early-stage esophageal squamous cell carcinoma (EESCC) and early-stage duodenum adenocarcinoma cancer (EDAC). Results We identified ~6,000 proteins and >10,000 phosphosites in single trace FFPE samples. The distinct separation of EESCC and EDAC illustrated the functions of cell cycle (RB1 T373, EGFR T693) in EESCC, and the positive impacts of apoptosis, metabolic processes (MTOR and MTOR S1261) in EDAC. Furthermore, we deconvoluted the immune infiltration of early-stage gastrointestinal cancer, in which higher immune cell signatures were detected in EDAC, and showed the specific cytokines in EESCC and EDAC. We performed kinases-substates relationship analysis and elucidated the specific proteomic kinase characterization of EESCC and EDAC, and proposed the medicative effects and corresponding drugs for EESCC and EDAC at the clinic.Conclusion We disclosed the specific immune characterization of the early-stage gastrointestinal cancer, and presented potential makers of EESCC (EGFR, PDGFRB, CDK4, WEE1) and EDAC (MTOR, MAP2K1, MAPK3). This study represents a major stepping stone towards investigating the carcinogenesis mechanism of gastrointestinal cancer, and providing a rich resource for medicative strategy in the clinic.


2021 ◽  
Vol 43 (3) ◽  
pp. 2167-2176
Author(s):  
Omar García-Pérez ◽  
Leticia Melgar-Vilaplana ◽  
Elizabeth Córdoba-Lanús ◽  
Ricardo Fernández-de-Misa

Formalin-fixed paraffin-embedded (FFPE) tumour samples may provide crucial data regarding biomarkers for neoplasm progression. Analysis of gene expression is frequently used for this purpose. Therefore, mRNA expression needs to be normalized through comparison to reference genes. In this study, we establish which of the usually reported reference genes is the most reliable one in cutaneous malignant melanoma (MM) and cutaneous squamous cell carcinoma (CSCC). ACTB, TFRC, HPRT1 and TBP expression was quantified in 123 FFPE samples (74 MM and 49 CSCC biopsies) using qPCR. Expression stability was analysed by NormFinder and Bestkeeper softwares, and the direct comparison method between means and SD. The in-silico analysis with BestKeeper indicated that HPRT1 was more stable than ACTB and TFRC in MM (1.85 vs. 2.15) and CSCC tissues (2.09 vs. 2.33). The best option to NormFinder was ACTB gene (0.56) in MM and TFRC (0.26) in CSCC. The direct comparison method showed lower SD means of ACTB expression in MM (1.17) and TFRC expression in CSCC samples (1.00). When analysing the combination of two reference genes for improving stability, NormFinder indicated HPRT1 and ACTB to be the best for MM samples, and HPRT1 and TFRC genes for CSCC. In conclusion, HPRT1 and ACTB genes in combination are the most appropriate choice for normalization in gene expression studies in MM FFPE tissue, while the combination of HPRT1 and TFRC genes are the best option in analysing CSCC FFPE samples. These may be used consistently in forthcoming studies on gene expression in both tumours.


2021 ◽  
Vol 11 (23) ◽  
pp. 11108
Author(s):  
Omid Azimzadeh ◽  
Maria Gomolka ◽  
Mandy Birschwilks ◽  
Shin Saigusa ◽  
Bernd Grosche ◽  
...  

Archival formalin-fixed, paraffin-embedded (FFPE) tissues and their related diagnostic records are an invaluable source of biological information. The archival samples can be used for retrospective investigation of molecular fingerprints and biomarkers of diseases and susceptibility. Radiobiological archives were set up not only following clinical performance such as cancer diagnosis and therapy but also after accidental and occupational radiation exposure events where autopsies or cancer biopsies were sampled. These biobanks provide unique and often irreplaceable materials for the understanding of molecular mechanisms underlying radiation-related biological effects. In recent years, the application of rapidly evolving “omics” platforms, including transcriptomics, genomics, proteomics, metabolomics and sequencing, to FFPE tissues has gained increasing interest as an alternative to fresh/frozen tissue. However, omics profiling of FFPE samples remains a challenge mainly due to the condition and duration of tissue fixation and storage, and the extraction methods of biomolecules. Although biobanking has a long history in radiation research, the application of omics to profile FFPE samples available in radiobiological archives is still young. Application of the advanced omics technologies on archival materials provides a new opportunity to understand and quantify the biological effects of radiation exposure. These newly generated omics data can be well integrated into results obtained from earlier experimental and epidemiological analyses to shape a powerful strategy for modelling and evaluating radiation effects on health outcomes. This review aims to give an overview of the unique properties of radiation biobanks and their potential impact on radiation biology studies. Studies recently performed on FFPE samples from radiobiology archives using advanced omics are summarized. Furthermore, the compatibility of archived FFPE tissues for omics analysis and the major challenges that lie ahead are discussed.


Author(s):  
Janne Lehtiö ◽  
Taner Arslan ◽  
Ioannis Siavelis ◽  
Yanbo Pan ◽  
Fabio Socciarelli ◽  
...  

Abstract The associated publication reports proteogenomic analysis of non-small cell lung cancer, where we identified molecular subtypes with distinct immune evasion mechanisms and therapeutic targets, and validated our classification method in separate clinical cohorts. This protocol describes histological, tertiary lymphoid structure (TLS), and immunohistochemical evaluation of clinical samples. Specifically, immunohistochemistry was performed for PD-L1, CD3, and CD8 on tumor microarrays (TMAs) derived from formalin-fixed paraffin embedded (FFPE) samples.


Author(s):  
Samir Jabari ◽  
Katja Kobow ◽  
Tom Pieper ◽  
Till Hartlieb ◽  
Manfred Kudernatsch ◽  
...  

AbstractMalformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi125-vi125
Author(s):  
Gilbert Georg Klamminger ◽  
Laurent Mombaerts ◽  
Karoline Klein ◽  
Finn Jelke ◽  
Giulia Mirizzi ◽  
...  

Abstract BACKGROUND Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably contributed to more precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a "molecular fingerprint" which could be used to differentiate tissue heterogeneity or diagnostic entities. RS has so far been successfully applied on fresh and frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded (FFPE) samples are challenging for RS. METHODS To address this issue, we examined FFPE samples of a broad range of intracranial tumors (e.g. glioblastoma and primary CNS lymphoma) and also different areas of morphologically highly heterogeneous glioblastoma tumor tissue. The latter in order to classify not only the tumor entity but also histologically defined GBM areas according to their spectral properties. We applied linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest, Support Vector Machine) on our spectroscopic data and compared statistical performance of resulting classifiers. RESULTS We found that Random Forest classification distinguished between glioblastoma and primary CNS lymphoma with a balanced accuracy of 94%, only using Raman measurements on FFPE tissue. Furthermore, our established support vector machine-based classifier identified distinct histological areas in glioblastoma such as tumor core and necroses with an overall accuracy of 70.5% and showed a clear separation between the areas of necrosis and peritumoral zone. CONCLUSIONS This relatively cheap and easy-to-apply tool may serve useful to complement histopathological and molecular diagnostics. It provides an unbiased approach to tumor diagnostics with very little requirements (e.g. histopathological feature completeness of the tumor entity) to the sample. As a conclusion, we propose RS as a potential future additional method in the (neuro)-pathological toolbox for tumor diagnostics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0244332
Author(s):  
Qing Sun ◽  
Larry Pastor ◽  
Jinwei Du ◽  
Michael J. Powell ◽  
Aiguo Zhang ◽  
...  

Background Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Early detection is critical to reduce CRC morbidity and mortality. In order to meet this need, we developed a molecular clamping assay called the ColoScape TM assay for early colorectal cancer diagnostics. Methods Nineteen mutations in four genes (APC, KRAS, BRAF and CTNNB1) associated with early events in CRC pathogenesis are targeted in the ColoScapeTM assay. Xenonucleic Acid (XNA)-mediated qPCR clamping technology was applied to minimize the wild-type background amplification in order to improve assay sensitivity of CRC mutation detection. The assay analytical performance was verified and validated, cfDNA and FFPE CRC patient samples were evaluated, and an ROC curve was applied to evaluate its performance. Results The data showed that the assay analytical sensitivity was 0.5% Variant Allele Frequency, corresponding to ~7–8 copies of mutant DNA with 5 ng total DNA input per test. This assay is highly reproducible with intra-assay CV of <3% and inter-assay CV of <5%. We have investigated 380 clinical samples including plasma cfDNA and FFPE samples from patients with precancerous and different stages of CRC. The preliminary assay clinical specificity and sensitivity for CRC cfDNA were: 100% (95% CI, 80.3–97.5%) and 92.2% (95% CI, 94.7–100%), respectively, with AUC of 0.96; 96% specificity (95% CI, 77.6–99.7%) and 92% sensitivity (95% CI, 86.1–95.6%) with AUC of 0.94 for CRC FFPE; 95% specificity (95% CI, 82.5%–99.1%) and 62.5% sensitivity (95% CI, 35.8%–83.7%) with AUC of 0.79 for precancerous lesions cfDNA. Conclusions The XNA-mediated molecular clamping assay is a rapid, precise, and sensitive assay for the detection of precancerous lesions cfDNA and CRC cfDNA or FFPE samples.


Sign in / Sign up

Export Citation Format

Share Document