Identification of the Novel Role of CD24 as an Oncogenesis Regulator and Therapeutic Target for Triple-Negative Breast Cancer

2018 ◽  
Vol 18 (1) ◽  
pp. 147-161 ◽  
Author(s):  
Shih-Hsuan Chan ◽  
Kuo-Wang Tsai ◽  
Shu-Yi Chiu ◽  
Wen-Hung Kuo ◽  
Heng-Yi Chen ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2524
Author(s):  
Wei-Chieh Huang ◽  
Hsiang-Cheng Chi ◽  
Shiao-Lin Tung ◽  
Po-Ming Chen ◽  
Ya-Chi Shih ◽  
...  

Triple negative breast cancer (TNBC) possesses poor prognosis mainly due to development of chemoresistance and lack of effective endocrine or targeted therapies. MiR-491-5p has been found to play a tumor suppressor role in many cancers including breast cancer. However, the precise role of miR-491-5p in TNBC has never been elucidated. In this study, we reported the novel tumor suppressor function of FOCAD/miR-491-5p in TNBC. High expression of miR-491-5p was found to be associated with better overall survival in breast cancer patients. We found that miR-491-5p could be an intronic microRNA processed form FOCAD gene. We are the first to demonstrate that both miR-491-5p and FOCAD function as tumor suppressors to inhibit cancer stemness, epithelial-mesenchymal transition, drug resistance, cell migration/invasion, and pulmonary metastasis etc. in TNBC. MiR-491-5p was first reported to directly target Rab interacting factor (RABIF) to downregulate RABIF-mediated TNBC cancer stemness, drug resistance, cell invasion, and pulmonary metastasis via matrix metalloproteinase (MMP) signaling. High expression of RABIF was found to be correlated with poor clinical outcomes of breast cancer and TNBC patients. Our data indicated that miR-491-5p and RABIF are potential prognostic biomarkers and targeting the novel FOCAD/miR-491-5p/RABIF/MMP signaling pathway could serve as a promising strategy in TNBC treatment.


2021 ◽  
Vol 32 ◽  
pp. S28
Author(s):  
A. Bosch ◽  
M. Cieśla ◽  
P. Cao Thi Ngoc ◽  
S. Mutukumar ◽  
G. Honeth ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 462
Author(s):  
Víctor Mayoral-Varo ◽  
María Pilar Sánchez-Bailón ◽  
Annarica Calcabrini ◽  
Marta García-Hernández ◽  
Valerio Frezza ◽  
...  

The role of Src family kinases (SFKs) in human tumors has been always associated with tyrosine kinase activity and much less attention has been given to the SH2 and SH3 adapter domains. Here, we studied the role of the c-Src-SH2 domain in triple-negative breast cancer (TNBC). To this end, SUM159PT and MDA-MB-231 human cell lines were employed as model systems. These cells conditionally expressed, under tetracycline control (Tet-On system), a c-Src variant with point-inactivating mutation of the SH2 adapter domain (R175L). The expression of this mutant reduced the self-renewal capability of the enriched population of breast cancer stem cells (BCSCs), demonstrating the importance of the SH2 adapter domain of c-Src in the mammary gland carcinogenesis. In addition, the analysis of anchorage-independent growth, proliferation, migration, and invasiveness, all processes associated with tumorigenesis, showed that the SH2 domain of c-Src plays a very relevant role in their regulation. Furthermore, the transfection of two different aptamers directed to SH2-c-Src in both SUM159PT and MDA-MB-231 cells induced inhibition of their proliferation, migration, and invasiveness, strengthening the hypothesis that this domain is highly involved in TNBC tumorigenesis. Therefore, the SH2 domain of c-Src could be a promising therapeutic target and combined treatments with inhibitors of c-Src kinase enzymatic activity may represent a new therapeutic strategy for patients with TNBC, whose prognosis is currently very negative.


2016 ◽  
Vol 38 (3) ◽  
pp. 1003-1014 ◽  
Author(s):  
Aiyu Zhu ◽  
Yan Li ◽  
Wei Song ◽  
Yumei Xu ◽  
Fang Yang ◽  
...  

Background/Aims: Androgen receptor (AR), a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC). However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL) TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT) or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC) staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC patients.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3357
Author(s):  
Hongmei Zheng ◽  
Sumit Siddharth ◽  
Sheetal Parida ◽  
Xinhong Wu ◽  
Dipali Sharma

Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.


2021 ◽  
Author(s):  
Ximena Minerva Bustamante-Marin ◽  
Kaylyn L. Devlin ◽  
Om Dave ◽  
Jenna L. Merlino ◽  
Shannon B. McDonell ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


Sign in / Sign up

Export Citation Format

Share Document