Abstract 118: CTCF, a master epigenetic regulator, is a haploinsufficient tumor suppressor gene in multiple cell lineages

Author(s):  
James M. Moore ◽  
Russell Moser ◽  
Leslie Smith ◽  
Kay Gurley ◽  
Denny Liggett ◽  
...  
eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Stefan Heinrichs ◽  
Lillian F Conover ◽  
Carlos E Bueso-Ramos ◽  
Outi Kilpivaara ◽  
Kristen Stevenson ◽  
...  

A common deleted region (CDR) in both myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) affects the long arm of chromosome 20 and has been predicted to harbor a tumor suppressor gene. Here we show that MYBL2, a gene within the 20q CDR, is expressed at sharply reduced levels in CD34+ cells from most MDS cases (65%; n = 26), whether or not they harbor 20q abnormalities. In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20–30% of normal levels in multipotent hematopoietic progenitors resulted in clonal dominance of these ‘sub-haploinsufficient’ cells, which was reflected in all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a clonal myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. We conclude that downregulation of MYBL2 activity below levels predicted by classical haploinsufficiency underlies the clonal expansion of hematopoietic progenitors in a large fraction of human myeloid malignancies.


2001 ◽  
Vol 120 (5) ◽  
pp. A299-A299
Author(s):  
D KAZANOV ◽  
B STERN ◽  
W PYERIN ◽  
O BOECHER ◽  
H STRUL ◽  
...  

Neurographics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 228-235
Author(s):  
S. Naganawa ◽  
T. Donohue ◽  
A. Capizzano ◽  
Y. Ota ◽  
J. Kim ◽  
...  

Li-Fraumeni syndrome is a familial cancer predisposition syndrome associated with germline mutation of the tumor suppressor gene 53, which encodes the tumor suppressor p53 protein. Affected patients are predisposed to an increased risk of cancer development, including soft-tissue sarcomas, breast cancer, brain tumors, and adrenocortical carcinoma, among other malignancies. The tumor suppressor gene TP53 plays an important, complex role in regulating the cell cycle, collaborating with transcription factors and other proteins. The disruption of appropriate cell cycle regulation by mutated TP53 is considered to be the cause of tumorigenesis in Li-Fraumeni syndrome. Appropriate surveillance, predominantly by using MR imaging, is used for early malignancy screening in an effort to improve the survival rate among individuals who are affected. Patients with Li-Fraumeni syndrome are also at increased risk for neoplasm development after radiation exposure, and, therefore, avoiding unnecessary radiation in both the diagnostic and therapeutic settings is paramount. Here, we review the epidemiology, genetics, imaging findings, and the current standard surveillance protocol for Li-Fraumeni syndrome from the National Comprehensive Cancer Network as well as potential treatment options.Learning Objective: Describe the cause of second primary malignancy among patients with Li-Fraumeni syndrome.


Sign in / Sign up

Export Citation Format

Share Document