Abstract SY27-02: Targeting leukemia stem cells with small molecule inhibitors of PRC1

Author(s):  
Tomasz Cierpicki
2013 ◽  
Vol 9 (12) ◽  
pp. 840-848 ◽  
Author(s):  
Kimberly A Hartwell ◽  
Peter G Miller ◽  
Siddhartha Mukherjee ◽  
Alissa R Kahn ◽  
Alison L Stewart ◽  
...  

2016 ◽  
Author(s):  
Shirish Shukla ◽  
Felicia Gray ◽  
Weijang Ying ◽  
Hyoje Cho ◽  
Qingjie Zhao ◽  
...  

2015 ◽  
Author(s):  
John L. Gillick ◽  
Zachary E. Thwing ◽  
Sudeepta Sridhara ◽  
Raj Murali ◽  
Meena Jhanwar-Uniyal

2017 ◽  
Author(s):  
Shirish Shukla ◽  
Felicia Gray ◽  
Weijiang Ying ◽  
Hyoje Cho ◽  
Qingjie Zhao ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 760-760
Author(s):  
Kimberly A. Hartwell ◽  
Peter G. Miller ◽  
Alison L. Stewart ◽  
Alissa R. Kahn ◽  
David J. Logan ◽  
...  

Abstract Abstract 760 Recent insights into the molecular and cellular processes that drive leukemia have called attention to the limitations intrinsic to traditional drug discovery approaches. To date, the majority of cell-based functional screens have relied on probing cell lines in vitro in isolation to identify compounds that decrease cellular viability. The development of novel therapeutics with greater efficacy and decreased toxicity will require the identification of small molecules that selectively target leukemia stem cells (LSCs) within the context of their microenvironment, while sparing normal cells. We hypothesized that it would be possible to systematically identify LSC susceptibilities by modeling key elements of bone marrow niche interactions in high throughput format. We tested this hypothesis by creating and optimizing an assay in which primary murine stem cell-enriched leukemia cells are plated on bone marrow stromal cells in 384-well format, and examined by a high content image-based readout of cobblestoning, an in vitro morphological surrogate of cell health and self-renewal. AML cells cultured in this way maintained their ability to reinitiate disease in mice with as few as 100 cells. 14,720 small molecule probes across diverse chemical space were screened at 5uM in our assay. Retest screening was performed in the presence of two different bone marrow stromal types in parallel, OP9s and primary mesenchymal stem cells (MSCs). Greater than 60% of primary screen hits positively retested (dose response with IC50 at or below 5 μM) on both types of stroma. Compounds that inhibited leukemic cobblestoning merely by killing the stroma were identified by CellTiter-Glo viability analysis and excluded. Compounds that killed normal primary hematopoietic stem and progenitor cell inputs, as assessed by a related co-culture screen, were also excluded. Selectivity for leukemia over normal hematopoietic cells was additionally examined in vitro by comingling these cells on stroma within the same wells. Primary human CD34+ AML leukemia and normal CD34+ cord blood cells were also tested, by way of the 5 week cobblestone area forming cell (CAFC) assay. Additionally, preliminary studies of human AML cells pulse-treated with small molecules ex vivo, followed by in vivo transplantation, provided further evidence of potent leukemia kill across genotypes. A biologically complex functional approach to drug discovery, such as the novel method described here, has previously been thought impossible, due to presumed incompatibility with high throughput scale. We show that it is possible, and that it bears fruit in a first pilot screen. By these means, we discover small molecule perturbants that act selectively in the context of the microenvironment to kill LSCs while sparing stroma and normal hematopoietic cells. Some hits act cell autonomously, and some do not, as evidenced by observed leukemia kill when only the stromal support cells are treated prior to the plating of leukemia. Some hits are known, such as parthenolide and celastrol, and some are previously underappreciated, such as HMG-CoA reductase inhibition. Others are entirely new, and would not have been revealed by conventional approaches to therapeutic discovery. We therefore present a powerful new approach, and identify drug candidates with the potential to selectively target leukemia stem cells in clinical patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3484-3484 ◽  
Author(s):  
Harald Herrmann ◽  
Katharina Blatt ◽  
Junwei Shi ◽  
Amy R. Rappaport ◽  
Karoline V. Gleixner ◽  
...  

Abstract Abstract 3484 Acute myeloid leukemia (AML) is a stem cell-derived malignancy characterized by uncontrolled proliferation and accumulation of myeloblasts in hematopoietic tissues. The clinical course and prognosis in AML vary depending on deregulated genes, cell type(s) involved, and the biological properties of the clone. In most variants of AML, the complexity and heterogeneity of oncogenomes pose a challenge for the development of effective targeted therapeutics. However, diverse genetic aberrations in AML typically converge functionally to dysregulate the same cellular core processes. One key event is the corruption of myeloid cell-fate programs resulting in the generation of aberrantly self-renewing leukemia stem cells (LSC), which maintain and propagate the disease and are often resistant to conventional chemotherapy. Hence, strategies aimed at terminating aberrant self-renewal and eradicating LSC are considered as key for the development of more effective AML therapies. In an effort to systematically probe genes involved in chromatin regulation as potential therapeutic targets, we recently employed an unbiased screening approach combining AML mouse models and new in-vivo RNAi technologies, through which we identified the epigenetic ‘reader' BRD4 as new candidate drug target in AML (Zuber et al., Nature, in press). Inhibition of BRD4 using RNAi or a new small-molecule inhibitor (JQ1) blocking BRD4 binding to acetylated histones, showed profound antileukemic effects in AML mouse models, in all human AML cell lines tested (n=8) as well as in primary AML cells. In all models tested, BRD4 suppression was found to trigger apoptosis as well as terminal myeloid differentiation, and potently suppressed expression programs previously associated with LSC. As one key target, we observed a dramatic transcriptional repression of MYC, which recently has been discussed as core component of an LSC associated transcriptional module. To further evaluate suppression of BRD4 as a potential therapeutic approach to eradicate LSC in human AML, we analyzed the effects of JQ1 in primary AML cells obtained from 17 patients with freshly diagnosed or relapsed/refractory AML (females, n=5, males, n=12, median age: 54 years; range: 21–80 years). In unfractionated primary AML cells, submicromolar doses of JQ1 were found to induce major growth-inhibitory effects (IC50 between 0.05 and 0.5 μM) in a broad spectrum of AML subtypes. No differences in IC50 values were seen when comparing drug effects in AML cells kept in the presence or absence of growth-stimulating cytokines (G-CSF, IL-3, SCF). In addition, JQ1 treatment effectively triggered apoptosis in all patients tested, with similar anti-leukemic activities observed in newly diagnosed pts and refractory/relapsed AML. To further evaluate the clinical value of BRD4 as a clinically relevant target in AML, we analyzed the effect of JQ1 on AML LSC. In these experiments, JQ1 effectively induced apoptosis in CD34+/CD38+ progenitor cells as well as in CD34+/CD38− AML stem cells in all donors examined as evidenced by combined surface/Annexin-V staining. Furthermore, JQ1 was found to induce morphologic signs of maturation in 6 of 7 patients examined, thereby confirming our previous data obtained in mouse AML cells. Finally, we were able to show that JQ1 synergizes with Ara-C in inducing growth inhibition in HL60 cells and KG-1 cells. In summary, our data show that small-molecule inhibition of BRD4 has strong anti-leukemic effects in a broad range of AML subtypes. Furthermore, our results support the notion that JQ1's ability to suppress LSC specific transcriptional modules may translate into a therapeutic entry point for eradicating LSC in primary AML. While a more extensive in vivo evaluation of these effects, as well as the development of pharmacologically improved compounds will be required, all existing data unambiguously highlight small-molecule inhibition of BRD4 as a new promising concept in AML therapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document