Abstract 3046: In situ analysis of microenvironmental glycogen in Ewing's sarcoma patient samples by mass spectrometry imaging

Author(s):  
Lyndsay E. Young ◽  
Lindsey R. Conroy ◽  
Harrison A. Clarke ◽  
Derek B. Allison ◽  
Richard R. Drake ◽  
...  
The Analyst ◽  
2021 ◽  
Author(s):  
Chao Zhang ◽  
Asta Žukauskaitė ◽  
Ivan Petřík ◽  
Aleš Pěnčík ◽  
Martin Hönig ◽  
...  

Phytohormones (plant hormones) are a group of small signalling molecules that act as important endogenous regulators in the plant development and stress responses. Previous research has identified phytohormone species, jasmonates,...


2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


2020 ◽  
Vol 52 (06) ◽  
pp. 435-447
Author(s):  
Fengxia Li ◽  
Annette Feuchtinger ◽  
Axel Walch ◽  
Na Sun

AbstractThe adrenal gland integrates catecholamine-producing neuroendocrine cells and steroid-producing cells with mesenchymal origin in a structured manner under one capsule and is a key regulator for vital bioactivity. In addition to adrenal-specific disease, dysregulation of adrenal hormones is associated with systemic effects, leading to undesirable metabolic and cardiovascular consequences. Mass spectrometry imaging (MSI) technique can simultaneously measure a broad range of biomolecules, including metabolites and hormones, which has enabled the study of tissue metabolic and hormone alterations in adrenal and adrenal-related diseases. Furthermore, this technique coupled with labeled immunohistochemistry staining has enabled the study of the pathophysiological adaptation of the adrenal gland under normal and abnormal conditions at different molecular levels. This review discusses the recent applications of in situ MSI in the adrenal gland. For example, the combination of formalin-fixed paraffin-embedded tissue microarray and MSI to tissues from patient cohorts has facilitated the discovery of clinically relevant prognostic biomolecules and generated promising hypotheses for new sights into physiology and pathophysiology of adrenal gland. MSI also has enabled the discovery of clinically significant tissue molecular (i. e., biomarker) and pathway changes in adrenal disease, particularly in adrenal tumors. In addition, MSI has advanced the ability to optimally identify and detect adrenal gland specific molecules. Thus, as a novel analytical methodology, MSI has provided unprecedented capabilities for in situ tissue study.


Sign in / Sign up

Export Citation Format

Share Document