Abstract A049: Centrosome loss and chromosomal instability in prostate tumor progression

Author(s):  
Mengdie Wang ◽  
Beatrice S. Knudsen ◽  
Gregory C. Rogers ◽  
Anne E. Cress
BIOspektrum ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 10-13
Author(s):  
Alicia Konrath ◽  
Ann-Kathrin Schmidt ◽  
Holger Bastians

AbstractChromosomal instability (CIN) is a hallmark of cancer and contributes to tumorigenesis and tumor progression. While structural CIN (S-CIN) leads to structural chromosome aberrations, whole chromosome instability (W-CIN) is defined by perpetual gains or losses of chromosomes during mitosis causing aneuploidy. Mitotic defects, but also abnormal DNA replication (replication stress) can lead to W-CIN. However, the functional link between replication stress, mitosis and aneuploidy is little understood.


2012 ◽  
Vol 287 (49) ◽  
pp. 41324-41333 ◽  
Author(s):  
Constantinos G. Broustas ◽  
Aiping Zhu ◽  
Howard B. Lieberman

2019 ◽  
Vol 40 (7) ◽  
pp. 828-839
Author(s):  
Juan A Ardura ◽  
Irene Gutiérrez-Rojas ◽  
Luis Álvarez-Carrión ◽  
M Rosario Rodríguez-Ramos ◽  
José M Pozuelo ◽  
...  

Abstract Advanced prostate cancer cells preferentially metastasize to bone by acquiring a bone phenotype that allows metastatic cells to thrive in the skeletal environment. Identification of factors that promote the expression of ectopic bone genes—process known as osteomimicry—leading to tumor progression is crucial to prevent and treat metastatic prostate cancer and prolong life expectancy for patients. Here, we identify the extracelular matrix protein mindin in the secretome of prostate adenocarcinoma cells and show that mindin overexpression in human and mouse TRAMP-C1-induced prostate tumors correlates with upregulated levels of bone-related genes in the tumorigenic prostate tissues. Moreover, mindin silencing decreased osteomimicry in adenocarcinoma cells and in the prostate tumor mice model, as well as reduced tumor cell proliferation, migration and adhesion to bone cells. Inhibition of the extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation decreased the proliferative, migratory and pro-adhesion actions of mindin on prostate tumor cells. In addition, conditioned media obtained by crosstalk stimulation of either osteocytes or osteoblasts with the secretome of TRAMP-C1 cells promoted osteomimicry in prostate tumor cells; an effect inhibited by mindin silencing of TRAMP-C1 cells. In vivo, tibiae of primary tumor-bearing mice overexpressed the pro-angiogenic and pro-metastattic factor vascular endothelial growth factor receptor 2 (VEGFR2) in a mindin-dependent manner. Our findings indicate that mindin is a novel regulator of osteomimicry in prostate tumors and potentially mediates tumor-bone cell crosstalk, suggesting its promising role as a target to inhibit bone metastases.


2010 ◽  
Vol 108 (2) ◽  
pp. 704-709 ◽  
Author(s):  
H. Sun ◽  
Y. Wang ◽  
M. Chinnam ◽  
X. Zhang ◽  
S. W. Hayward ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1071 ◽  
Author(s):  
Juan A. Ardura ◽  
Luis Álvarez-Carrión ◽  
Irene Gutiérrez-Rojas ◽  
Verónica Alonso

Advanced prostate cancers that progress to tumor metastases are often considered incurable or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors, de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation, motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways involved in the development of prostate cancer and its progression. Such factors and pathways include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate cancer cells, potentially favoring bone metastases development. New therapies for the treatment of prostate cancer include compounds characterized by potent and specific actions that target calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential (TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated the relationship between calcium signaling and progression of prostate cancer, as well as potential therapies aiming to modulate calcium signaling in prostate tumor progression.


Sign in / Sign up

Export Citation Format

Share Document