Abstract 3508: Combination of the Chk1 inhibitor (prexasertib) with a PI3K/mTOR inhibitor (LY3023414) induces synergistic anti-tumor activity in triple negative breast cancer (TNBC) models

Author(s):  
Wenjuan Wu ◽  
Greg Donoho ◽  
Philip Iversen ◽  
Jack Dempsey ◽  
Andrew Capen ◽  
...  
Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Anindita Das ◽  
Sahak Hovsepian ◽  
Sayantanee Das ◽  
Arun Samidurai ◽  
Adolfo G Mauro ◽  
...  

Background: Doxorubicin (DOX) is a first-line anticancer drug for the treatment of triple negative breast cancer (TNBC). However, its dose-dependent delayed and progressive cardiotoxicity limits its therapeutic application. NovoMedix (NM922) is a novel dual mTOR inhibitor/AMPK activator that was shown to attenuate adverse cardiac remodeling and fibrosis in a pressure-overload mouse model of heart failure. We investigated whether combination therapy with DOX and NM922 exhibits synergistic chemotherapeutic effect while mitigating DOX cardiotoxicity. Methods & Results: Tumors were generated in athymic female BALB/cAnNCr-nu/nu mice by implanting MDA-MB-231 cells into the rear right flank. Mice with tumors (volume≈200mm 3 ) were randomized into 6 groups and treated as follows: 1) Control (n=10); 2) DOX (3 mg/kg; i.p. twice weekly, total 15 mg/kg; n=10); 3) NM922 (25 mg/kg/d; p.o. n=5); 4) DOX+NM922 (25 mg/kg/d; p.o. n=15); 5) NM922 (100 mg/kg/d; p.o. n=5); 6) DOX+NM922 (100 mg/kg/d; p.o. n=15). Tumor size, body weight and cardiac function were assessed throughout the study. DOX alone, and to a significant extent when in combination with NM922 (25 mg/kg) reduced tumor growth compared to control. NM922 (100 mg/kg) with/without DOX significantly reduced tumor growth as compared to DOX alone (Fig A). DOX caused reduction in body weight and survival of tumor-bearing mice. NM922 did not prevent DOX-induced cachexia, but significantly improved survival in DOX-treated mice (Fig B). DOX treatment caused a significant decline in left ventricular ejection fraction compared to control over 3 weeks, which was ameliorated with NM922 (100 mg/kg) co-treatment (Fig C&D). Conclusion: Our results suggest that NM922 may potentiate the chemotherapeutic efficacy of DOX in TNBC, while mitigating its cardiotoxicity. Moreover, these findings advocate the potential efficacy of utilizing lower DOX dosages when combined with NM922, which would have significant clinical implications.


2014 ◽  
Vol 147 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Julie M. Madden ◽  
Kelly L. Mueller ◽  
Aliccia Bollig-Fischer ◽  
Paul Stemmer ◽  
Raymond R. Mattingly ◽  
...  

2020 ◽  
Vol 25 (12) ◽  
pp. 1013
Author(s):  
Margaret E. Gatti‐Mays ◽  
Fatima H. Karzai ◽  
Sanaz N. Soltani ◽  
Alexandra Zimmer ◽  
Jeffrey E. Green ◽  
...  

2017 ◽  
Vol 38 (4) ◽  
pp. 513-523 ◽  
Author(s):  
Zhi-rui Zhou ◽  
Zhao-zhi Yang ◽  
Shao-jia Wang ◽  
Li Zhang ◽  
Ju-rui Luo ◽  
...  

2020 ◽  
Author(s):  
Sadiya Parveen ◽  
Sumit Siddharth ◽  
Laurene S Cheung ◽  
Alok Kumar ◽  
John R Murphy ◽  
...  

ABSTRACTIn many solid tumors including triple-negative breast cancer (TNBC), IL-4 receptor (IL-4R) upregulation has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential and a Th2 response in the tumor microenvironment (TME). Immunosuppressive cells in the TME including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL4-R. We hypothesized that selective depletion of IL4-R bearing cells in TNBC may have dual cytotoxic and immunotherapeutic benefit. To selectively target IL-4R+ cells, we genetically constructed, expressed and purified DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. We found that DABIL-4 has potent and specific cytotoxic activity against TNBC cells in vitro. In murine TNBC models, DABIL-4 significantly reduced tumor growth, splenomegaly and lung metastases, and this was associated with reductions in MDSC, TAM and regulatory T-cells (Tregs) populations with a concomitant increase in the proportion of IFNγ+ CD8 T-cells. The anti-tumor activity of DABIL-4 was absent in IL-4R KO mice directly implicating IL-4R directed killing as the mechanism of anti-tumor activity. Moreover, NanoString analysis of DABIL-4 treated TNBC tumors revealed marked decline in mRNA transcripts that promote tumorigenesis and metastasis. Our findings demonstrate that DABIL-4 is a potent targeted antitumor agent which depletes both IL-4R bearing tumor cells as well as immunosuppressive cell populations in the TME.STATEMENT OF SIGNIFICANCEIn solid tumors like breast cancer, Interleukin-4 receptor (IL-4R) expression in the tumor microenvironment aids tumor growth and metastasis. IL-4R expression upon host immune cells further dampens antitumor immunity. In this study, we have genetically constructed a fusion protein toxin, DABIL-4, composed of the catalytic and translocation domains of diphtheria toxin and murine IL-4. DABIL-4 showed specific cytotoxicity against triple-negative breast cancer (TNBC) cells in vitro. DABIL-4 also markedly inhibited TNBC tumor growth and metastasis in vivo. The primary activity of DABIL-4 was found to be depletion of IL-4R+ immune cells in combination with direct elimination of tumor cells. In conclusion, DABIL-4 targeting of both tumor and immunosuppressive host cells is a versatile and effective treatment strategy for TNBC.


Sign in / Sign up

Export Citation Format

Share Document