Abstract P6-08-13: Personalized and cost-effective detection of copy number variants by molecular-barcode next-generation sequencing and long-read nanopore sequencing

Author(s):  
Ava Kwong ◽  
Chun H Au ◽  
Dona N Ho ◽  
Elaine YL Wong ◽  
Yvonne Chung ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Albina Nowak ◽  
Omer Murik ◽  
Tzvia Mann ◽  
David A. Zeevi ◽  
Gheona Altarescu

AbstractMore than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology. Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long-read sequencing of a 13 kb PCR amplicon. We used minimap2 to align the long-read data and Nanopolish and Sniffles to call variants. All the variants detected by Sanger (including a deep intronic variant) were also detected by long-read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology. Our long-read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease.


2021 ◽  
Author(s):  
Albina Nowak ◽  
Omer Murik ◽  
Tzvia Mann ◽  
David A. Zeevi ◽  
Gheona Altarescu

Abstract Introduction: More than one thousand variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence.Aims: We aimed to design and validate a method for sequencing the GLA gene using long read Oxford Nanopore sequencing technology.Methods: Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long read sequencing of a 13kb PCR amplicon. We used minimap2 to align the long read data and Nanopolish and Sniffles to call variants.Results: All the variants detected by Sanger (including a deep intronic variant) were also detected by long read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology.Conclusions: Our long read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease.


2020 ◽  
Vol 8 (1) ◽  
pp. e000299
Author(s):  
Ping Zhang ◽  
Devika Ganesamoorthy ◽  
Son Hoang Nguyen ◽  
Raymond Au ◽  
Lachlan J Coin ◽  
...  

BackgroundAnalysis of vector integration sites in gene-modified cells can provide critical information on clonality and potential biological impact on nearby genes. Current short-read next-generation sequencing methods require specialized instruments and large batch runs.MethodsWe used nanopore sequencing to analyze the vector integration sites of T cells transduced by the gammaretroviral vector, SFG.iCasp9.2A.ΔCD19. DNA from oligoclonal cell lines and polyclonal clinical samples were restriction enzyme digested with two 6-cutters,NcoIandBspHI; and the flanking genomic DNA amplified by inverse PCR or cassette ligation PCR. Following nested PCR and barcoding, the amplicons were sequenced on the Oxford Nanopore platform. Reads were filtered for quality, trimmed, and aligned. Custom tool was developed to cluster reads and merge overlapping clusters.ResultsBoth inverse PCR and cassette ligation PCR could successfully amplify flanking genomic DNA, with cassette ligation PCR showing less bias. The 4.8 million raw reads were grouped into 12,186 clusters and 6410 clones. The 3′long terminal repeat (LTR)-genome junction could be resolved within a 5-nucleotide span for a majority of clusters and within one nucleotide span for clusters with ≥5 reads. The chromosomal distributions of the insertional sites and their predilection for regions proximate to transcription start sites were consistent with previous reports for gammaretroviral vector integrants as analyzed by short-read next-generation sequencing.ConclusionOur study shows that it is feasible to use nanopore sequencing to map polyclonal vector integration sites. The assay is scalable and requires minimum capital, which together enable cost-effective and timely analysis. Further refinement is required to reduce amplification bias and improve single nucleotide resolution.


2019 ◽  
Author(s):  
Tom Hill ◽  
Robert L. Unckless

AbstractCopy number variants (CNV) are associated with phenotypic variation in several species. However, properly detecting changes in copy numbers of sequences remains a difficult problem, especially in lower quality or lower coverage next-generation sequencing data. Here, inspired by recent applications of machine learning in genomics, we describe a method to detect duplications and deletions in short-read sequencing data. In low coverage data, machine learning appears to be more powerful in the detection of CNVs than the gold-standard methods or coverage estimation alone, and of equal power in high coverage data. We also demonstrate how replicating training sets allows a more precise detection of CNVs, even identifying novel CNVs in two genomes previously surveyed thoroughly for CNVs using long read data.Available at: https://github.com/tomh1lll/dudeml


Sign in / Sign up

Export Citation Format

Share Document