scholarly journals PROX1 Enhances Colon Cancer Growth and Metastasis by Regulating Stem Cells

2014 ◽  
Vol 4 (12) ◽  
pp. OF8-OF8
2014 ◽  
Vol 23 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Claudiu Margaritescu ◽  
Daniel Pirici ◽  
Irina Cherciu ◽  
Alexandru Barbalan ◽  
Tatiana Cârtâna ◽  
...  

Background & Aims: Colorectal cancer represents the third most common malignancy and the fourth most common cause of cancer death worldwide. The existence of drug-resistant colon cancer stem cells is thought to be one of the most important reasons behind treatment failure in colon cancer, their existence putatively leading to metastasis and recurrences. The aim of our study was to investigate the immunoexpression patterns of CD133 and CD166 in colon carcinoma, both individually and in combination, assessing their significance as prognostic markers.Methods. A total of 45 retrospective colon adenocarcinoma cases were investigated by enzymatic and multiple fluorescence immunohistochemistry for their CD133 and CD166 expression and colocalization.Results. Both CD133 and CD166 were expressed to different extents in all cancer specimens, with apredominant cytoplasmic pattern for CD133 and a more obvious membranous-like pattern for CD166.Overall, when comparing their reactivity for the tumoral tissue, CD166 expression areas seemed to be smaller than those of CD133. However, there was a direct correlation between CD133 and CD166 expression levels throughout the entire spectrum of lesions, with higher values for dysplastic lesions. Colocalization of CD133/ CD166 was obvious at the level of cells membranes, with higher coeficients in high grade dysplasia, followed by well and moderate differentiated tumours.Conclusions. CD133/CD166 colocalization is an early event occurring in colon tumorigenesis, with thehighest coeficients recorded for patients with high grade dysplasia, followed by well differentiated tumours. Thus, we consider that the coexpression of these two markers could be useful for further prognostic andtherapeutically stratification of patients with colon cancer.Abbreviations: AJCC - American Joint Committee on Cancer; CCD - charge-coupled device camera sensor; CD133 - prominin-1 (PROM1); CD166 - Activated Leukocyte Cell Adhesion Molecule (ALCAM); CRC - colorectal cancer; CSC - cancer stem cells; DAB - 3,3'-diaminobenzidine chromogen; DAPI - 4',6-diamidino- 2-phenylindole; HE - Hematoxylin and eosin staining; HGD - high grade dysplasia; HRP - horseradish peroxidase; LGD - low grade dysplasia; SDS - sodium dodecyl sulfate*Part of this work has been accepted as a poster presentation at the Digestive Disease Week (DDW) meeting, Chicago, IL, USA May 3-6, 2014


2014 ◽  
Vol 20 (7) ◽  
pp. 1041-1044 ◽  
Author(s):  
Amrita Ahluwalia ◽  
Michael Jones ◽  
Tamara Matysiak-Budnik ◽  
Andrzej Tarnawski
Keyword(s):  

2016 ◽  
Vol 11 (5) ◽  
pp. 427-433 ◽  
Author(s):  
Lisette Potze ◽  
Simone di Franco ◽  
Jan H. Kessler ◽  
Giorgio Stassi ◽  
Jan Paul Medema

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


2014 ◽  
Vol 7 (4) ◽  
pp. 1078-1082 ◽  
Author(s):  
DEBAO LOU ◽  
LINA ZHU ◽  
HUAWEI DING ◽  
HAI-YAN DAI ◽  
GANG-MING ZOU

2021 ◽  
pp. 112809
Author(s):  
Qiao Qiao ◽  
Ruixia Bai ◽  
Wanying Song ◽  
Haining Gao ◽  
Minyu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document