Electrophysiological Analysis of Conditioned Reflexes where the Conditional Stimulus is the Stimulation of Phylogenetically Different Parts of the Cerebellum

1974 ◽  
Vol 9 (6) ◽  
pp. 458-487 ◽  
Author(s):  
V.V. Fanardjian ◽  
E.V. Papoyan
Neurology ◽  
2019 ◽  
Vol 92 (12) ◽  
pp. 575-578 ◽  
Author(s):  
Richard Leblanc

Wilder Penfield's contributions to the structure–function relationships of the brain are well-known. Less well-known is the influence that Ivan Pavlov and the conditioned reflex had on Penfield's understanding of epileptogenesis, and on his concept of the acquisition of memories, language, and perception—what Penfield referred to as the physiology of the mind. Penfield invoked conditioned reflexes to explain responses to electrocortical stimulation of the temporal lobes that encompass memory, perception, and affect. Penfield referred to these responses as experiential phenomena since he considered that they constituted a record of past experiences. Penfield also invoked the conditioned reflex to explain the acquisition of the interpretive aspects of written and spoken language in the dominant temporal cortex. This article describes and discusses these neglected aspects of Penfield's work, and how they contributed to a broader understanding of the functional integration of the temporal cortex and the limbic system.


1981 ◽  
Vol 90 (1) ◽  
pp. 231-251
Author(s):  
F. NAGY ◽  
M. MOULINS

1. In the lobster Jasus lalandii the activity of the oesophageal nervous system (monitored through the firing of its main motor neuron, OD1) is modulated by a pair of proprioceptors, the posterior stomach receptors (PSRs). 2. The in vitro preparation used consisted of the oesophageal nervous system, the suboesophageal ganglion and the two PSRs, which provide the only source of sensory input. 3. Stimulation of a PSR activates only the oesophageal oscillator located in the ipsilateral commissural ganglion. 4. When spike conduction is blocked in the ipsilateral connective, the stimulation of a PSR activates the contralateral oesophageal oscillator. Inputs from each PSR project to the different parts of the distributed oesophageal network (in the two commissural ganglia and the oesophageal ganglion), but at a given time only one of the PSRs' projections is effective. 5. The relative efficacy of the PSRs' projections is controlled by the oesophageal motor network itself and requires that the superior oesophageal nerves be intact (sons). 6. The PSRs' inputs are integrated in the suboesophageal ganglion before reaching the oesophageal network. However, this premotor step is not involved in the control of the unilaterality of PSRs' effects. 7. The PSRs are stimulated by at least two different rhythmical muscular sequences of the foregut (the gastric mill sequence and the cardiac sac sequence) and provide a source of rhythmical inputs to the CNS. 8. The oesophageal nervous system exhibits a periodically varying sensitivity to the PSRs' inputs, which is illustrated by a phase-response curve. 9. Each oesophageal oscillator can be entrained by the rhythmical PSRs' inputs over a range of period. This range includes the period of the spontaneous gastric rhythm. 10. It is proposed that the PSRs enable the oesophageal and the gastric mill rhythms to be coordinated through a peripheral loop. The participation of PSRs in the coordination of different motor sequences of the foregut is discussed.


1993 ◽  
Vol 69 (2) ◽  
pp. 533-544 ◽  
Author(s):  
K. J. Berkley ◽  
A. Robbins ◽  
Y. Sato

1. The uterus, cervix, and vaginal canal are innervated by afferent fibers in the hypogastric and pelvic nerves. Four studies compared the innervation territory and sensitivity to peripheral stimuli of the two sets of fibers in adult virgin rats. 2. Innervation territory was studied anatomically by injecting different fluorescent dyes into different parts of the reproductive, lower urinary, and lower digestive tracts and examining retrogradely labeled neurons in dorsal root ganglia. It was also studied electrophysiologically in anesthetized rats by summing potentials evoked in branches of the two nerves by electrical stimulation of different parts of the reproductive tract. 3. In both studies sensory innervation of the reproductive tract shifted from the pelvic to the hypogastric nerve (i.e., shifted entry into the spinal cord from the L6-S1 to the T13-L3 dorsal root ganglia, respectively) as the dye or stimulating electrode shifted from the vaginal entrance to the uterine horns, with fibers from both nerves densely innervating the cervix region (i.e., entering the spinal cord through both sets of ganglia). The anatomic results suggested that the regions innervated by fibers in one nerve might also be innervated by a small component of normally quiescent fibers in the other nerve. 4. Response sensitivity was studied electrophysiologically by simultaneously recording multiunit activity in branches of the hypogastric and pelvic nerves in two ways. First, in intact, anesthetized rats, activity was recorded during mechanical stimulation of the reproductive tract (distension of the vagina and uterus, probing the cervix). Second, in an in vitro organ preparation of the uterus and vagina, activity was recorded during chemical stimulation through the uterine artery with bradykinin, serotonin, NaCN, CO2, and KCl. 5. Pelvic nerve fibers were markedly more sensitive than hypogastric nerve fibers to uterine and cervical mechanostimulation. Similarly, pelvic nerve fibers were more likely to respond or responded more vigorously than hypogastric nerve fibers to all chemical stimuli (except KCl). 6. These results provide strong evidence that afferent fibers in the pelvic and hypogastric nerves of nulliparous adult rats subserve different functions in reproduction and sensation. Pelvic nerve fibers seem closely tied to sensory and behavioral processes associated with mating and conception, whereas hypogastric fibers seem closely tied to pregnancy and nociception, with fibers in both nerves serving functions during parturition.


2018 ◽  
Vol 27 (1) ◽  
pp. 37-48
Author(s):  
Rifat Samad ◽  
Parveen Rashid ◽  
JL Karmoker

Sand culture experiments were undertaken to examine the effect of increasing aluminium levels (50-150 μM) on the mineral nutrients uptake (K+, Na+, Ca2+, Mg2+, Fe2+ and Cl-). Increasing concentrations of Al inhibited the uptake of K+, Ca2+, Mg2+ and Fe2+ but enhanced that of Na+ and Cl- in the root and shoot of rice, and the root, stem and leaves of chickpea. 150 μM Al caused a maximum inhibition of K+ accumulation in the root and shoot of rice ranging from 25.5 to 49.0% and 33 to 55.5%, respectively, from 7 to 28 day of treatment. In the root, stem and leaves of chickpea, 150 μM Al inhibited K+ content by 23.9 to 84.0%, 13.2 to 54.4% and 25.3 to 61.2%, respectively, from 7 to 28 day of application. On the contrary, a dramatic 2.7 to 3.1-folds and 70.8% to 2.3-folds stimulation of Na+ accumulation was recorded in the root of rice and chickpea, respectively, following 100 μM Al treatment from 7 to 28 day of treatment. Different concentrations of aluminium led to a stimulation of Cl- accumulation in different parts of rice and chickpea plants. In rice and chickpea plants, the inhibitory effect of aluminium stress on the accumulation of Ca2+, Mg2+ and Fe2+ was enhanced with the increase in Al concentration from 50 to 150 μM. Dhaka Univ. J. Biol. Sci. 27(1): 37-48, 2018 (January)


Sign in / Sign up

Export Citation Format

Share Document