Growth Factors and Extracellular Signal-Regulated Kinases (Mitogen-Activated Protein Kinase) in the Rat Pineal Gland

1994 ◽  
Vol 59 (2) ◽  
pp. 152-155 ◽  
Author(s):  
Hiroshi Kiyama ◽  
Akio Wanaka ◽  
Hidemasa Kato ◽  
Hiroshi Maeno ◽  
Kazumasa Matsumoto ◽  
...  
2002 ◽  
Vol 363 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Juan Carlos MONTERO ◽  
Laura YUSTE ◽  
Elena DÍAZ-RODRÍGUEZ ◽  
Azucena ESPARÍS-OGANDO ◽  
Atanasio PANDIELLA

Solubilization of a number of membrane proteins occurs by the action of cell-surface proteases, termed secretases. Recently, the activity of these secretases has been reported to be controlled by the extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and the p38 mitogen-activated protein kinase (MAPK) routes. In the present paper, we show that shedding of membrane-anchored growth factors (MAGFs) may also occur through MAPK-independent routes. In Chinese-hamster ovary cells, cleavage induced by protein kinase C (PKC) stimulation was largely insensitive to inhibitors of the ERK1/ERK2 and p38 routes. Other reagents such as sorbitol or UV light stimulated MAGF cleavage independent of PKC. The action of sorbitol on cleavage was only partially prevented by the combined action of inhibitors of the p38 and ERK1/ERK2 routes, indicating that sorbitol can also stimulate shedding by MAPK-dependent and -independent routes. Studies in cells devoid of activity of the secretase tumour necrosis factor-α-converting enzyme (TACE) indicated that this protease had an essential role in PKC- and ERK1/ERK2-mediated shedding. However, secretases other than TACE may also cleave MAGFs since sorbitol could still induce shedding in these cells. These observations suggest that cleavage of MAGFs is a complex process in which multiple secretases, activated through different MAPK-dependent and -independent routes, are involved.


Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 5194-5201 ◽  
Author(s):  
C. L. Chik ◽  
M. Mackova ◽  
D. Price ◽  
A. K. Ho

Abstract In this study, we investigated adrenergic and photoneural regulation of p38MAPK phosphorylation in the rat pineal gland. Norepinephrine (NE), the endogenous neurotransmitter, dose-dependently increased the levels of phosphorylated MAPK kinase 3/6 (MKK3/6) and p38MAPK in rat pinealocytes. Time-course studies showed a gradual increase in MKK3/6 and p38MAPK phosphorylation that peaked between 1 and 2 h and persisted for 4 h post NE stimulation. In cells treated with NE for 2 and 4 h, the inclusion of prazosin or propranolol reduced NE-induced MKK3/6 and p38MAPK phosphorylation, indicating involvement of both α- and β-adrenergic receptors for the sustained response. Whereas treatment with dibutyryl cAMP or ionomycin mimicked the NE-induced MKK3/6 and p38MAPK phosphorylation, neither dibutyryl cGMP nor 4β-phorbol 12-myristate 13-acetate had an effect. The NE-induced increase in MKK3/6 and p38MAPK phosphorylation was blocked by KT5720 (a protein kinase A inhibitor) and KN93 (a Ca2+/calmodulin-dependent kinase inhibitor), but not by KT5823 (a protein kinase G inhibitor) or calphostin C (a protein kinase C inhibitor). In animals housed under a lighting regimen with 12 h of light, MKK3/6 and p38MAPK phosphorylation increased in the rat pineal gland at zeitgeber time 18. The nocturnal increase in p38MAPK phosphorylation was blocked by exposing the animal to constant light and reduced by treatment with propranolol, a β-adrenergic blocker. Together, our results indicate that activation of p38MAPK is under photoneural control in the rat pineal gland and that protein kinase A and intracellular Ca2+ signaling pathways are involved in NE regulation of p38MAPK.


FEBS Letters ◽  
2004 ◽  
Vol 577 (1-2) ◽  
pp. 220-226 ◽  
Author(s):  
Donald M. Price ◽  
Constance L. Chik ◽  
David Terriff ◽  
Joan Weller ◽  
Ann Humphries ◽  
...  

2006 ◽  
Vol 26 (8) ◽  
pp. 3039-3047 ◽  
Author(s):  
Gray W. Pearson ◽  
Svetlana Earnest ◽  
Melanie H. Cobb

ABSTRACT Cells integrate signals to select the appropriate response from an array of possible outcomes. Signal integration causes the reorganization of signaling pathways by undescribed events. To analyze the molecular changes in signaling pathways that elicit different responses, we focused on the interaction between cyclic AMP (cAMP) and growth factors. We show that the activation of extracellular signal-regulated kinase 5 (ERK5), but not ERK1/2, by growth factors is disrupted by cAMP through cAMP-dependent protein kinase (PKA). Activation of MEKK2, a mitogen-activated protein (MAP) kinase kinase kinase upstream of ERK5 that is required for growth factor activation of ERK5, is also disrupted by PKA. Transcription of c-Jun is induced by ERK5, and like ERK5, c-Jun induction is also blocked by cAMP. Transcription from the serum response element, like activation of ERK1/2, is not blocked by cAMP. Collectively, these results support a model in which cAMP shapes the growth factor-induced cellular response through PKA-dependent uncoupling of selected MAP kinase cascades from activating signals.


2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


Sign in / Sign up

Export Citation Format

Share Document