Pretreatment with Glutamine Attenuates Anoxia/Reoxygenation Injury of Human Proximal Renal Tubular Epithelial Cells via Induction of Heme Oxygenase-1

Pharmacology ◽  
2009 ◽  
Vol 84 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Shi ◽  
Ya-Ni Feng ◽  
Jun Fang ◽  
Ke Xu
2022 ◽  
Vol 8 ◽  
Author(s):  
Wenqiang Tao ◽  
Fen Liu ◽  
Jianguo Zhang ◽  
Shangmiao Fu ◽  
Hui Zhan ◽  
...  

Renal ischemia-reperfusion (IR) is frequently observed in patients who are critically ill, yet there are no reliable or effective approaches for the treatment of this condition. Ferroptosis, a form of programmed cell death, is regulated by key genes such as glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HMOX1) and participates in the injury of renal tubular epithelial cells during IR. This study aimed to investigate the miRNA-mRNA regulatory networks involved in ferroptosis following renal IR. Using bioinformatics analysis, HMOX1 was found to be significantly upregulated during the early stages of renal IR injury, and microRNA-3587 (miR-3587) was identified as a putative regulator of HMOX1. When a miR-3587 inhibitor was applied in a hypoxia-reoxygenation (HR) model system using renal tubular epithelial cells, HO-1 protein (encoded by HMOX1) expression was significantly increased relative to that observed in the HR group, with concomitant increases in GPX4 protein levels, enhanced cell viability, a reduction in malondialdehyde content, decreased Fe2+ level, and the restoration of normal mitochondrial membrane potential. Transmission electron microscopy showed a reduced or absent mitochondrial crest and a damaged mitochondrial outer membrane. Targeting of HMOX1 by miR-3587 was confirmed by luciferase reporter gene assay. In conclusion, these preliminary results indicate that inhibition of miR-3587 promotes HO-1 upregulation, thereby protecting renal tissues from IR-induced ferroptosis.


Renal Failure ◽  
2018 ◽  
Vol 40 (1) ◽  
pp. 603-610 ◽  
Author(s):  
Chun Chen ◽  
Chudan Cai ◽  
Hanfei Lin ◽  
Weidai Zhang ◽  
Yanqiang Peng ◽  
...  

2005 ◽  
Vol 288 (2) ◽  
pp. F308-F314 ◽  
Author(s):  
Alexei G. Basnakian ◽  
Norishi Ueda ◽  
Xiaoman Hong ◽  
Valentin E. Galitovsky ◽  
Xiaoyan Yin ◽  
...  

Ceramide is known to play a role in the cell signaling pathway involved in apoptosis. Most studies suggest that enhanced ceramide generation is the result of hydrolysis of sphingomyelin by sphingomyelinases. However, the role of ceramide synthase in enhanced ceramide generation has not been previously examined in hypoxia-reoxygenation injury. In the present study, we demonstrated that 60-min hypoxia of rat renal tubular epithelial NRK-52E cells in a gas chamber with 95% N2-5% CO2 with glucose deprivation resulted in a significant increase in ceramide generation. The ceramide level further increased after reoxygenation for 60 min. Exposure of cells to hypoxia-reoxygenation resulted in a significant increase in ceramide synthase activity without any significant change in acid or neutral sphingomyelinase. The hypoxia-reoxygenation of NRK-52E cells was also associated with the release of endonuclease G (EndoG) from mitochondria to cytoplasm measured by Western blot analysis and endonuclease activity assay. It further led to the fragmentation of DNA and cell death. A specific inhibitor of ceramide synthase, fumonisin B1 (50 μM), suppressed hypoxia-reoxygenation-induced ceramide generation and provided protection against hypoxia-reoxygenation-induced EndoG release, DNA fragmentation, and cell death. Taken together, our data suggest that hypoxia-reoxygenation results in an activation of ceramide synthase rather than sphingomyelinase and that ceramide synthase-dependent ceramide generation is a key modulator of EndoG-mediated cytotoxicity in hypoxia-reoxygenation injury to renal tubular epithelial cells.


2003 ◽  
Vol 64 (4) ◽  
pp. 1302-1309 ◽  
Author(s):  
Yonghong Yang ◽  
Kazuhide Ohta ◽  
Masaki Shimizu ◽  
Kayoko Morimoto ◽  
Chinami Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document