ceramide level
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 11 ◽  
Author(s):  
I Gusti Md Gde Surya C. Trapika ◽  
Xin Tracy Liu ◽  
Long Hoa Chung ◽  
Felcia Lai ◽  
Chanlu Xie ◽  
...  

Prostate cancer is the second most prevalent malignancy worldwide. In the early stages, the development of prostate cancer is dependent on androgens. Over time with androgen deprivation therapy, 20% of prostate cancers progress to a castration-resistant form. Novel treatments for prostate cancers are still urgently needed. Erianin is a plant-derived bibenzyl compound. We report herein that erianin exhibits anti-tumor effects in androgen-sensitive and castration-resistant prostate cancer cells through different mechanisms. Erianin induces endoplasmic reticulum stress-associated apoptosis in androgen-sensitive prostate cancer cells. It also triggers pro-survival autophagic responses, as inhibition of autophagy predisposes to apoptosis. In contrast, erianin fails to induce apoptosis in castration-resistant prostate cancer cells. Instead, it results in cell cycle arrest at the M phase. Mechanistically, C16 ceramide dictates differential responses of androgen-sensitive and castration-resistant prostate cancer cells to erianin. Erianin elevates C16 ceramide level in androgen-sensitive but not castration-resistant prostate cancer cells. Overexpression of ceramide synthase 5 that specifically produces C16 ceramide enables erianin to induce apoptosis in castration-resistant prostate cancer cells. Our study provides both experimental evidence and mechanistic data showing that erianin is a potential treatment option for prostate cancers.


2021 ◽  
Vol 14 ◽  
Author(s):  
Katherine Castor ◽  
Jessica Dawlaty ◽  
Xianghong Arakaki ◽  
Noah Gross ◽  
Yohannes W. Woldeamanuel ◽  
...  

BackgroundLipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology.MethodsWe obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates.ResultsUnesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF.ConclusionsPlasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.


Reproduction ◽  
2021 ◽  
Author(s):  
Tomoya Takashima ◽  
Tsubasa Fujimaru ◽  
Yayoi Obata

In vitro generation of fertile oocytes has been reported in several mammalian species. However, oocyte integrity is compromised by in vitro culture. Here, we aimed to understand the factors affecting oocyte competency by evaluating mitochondrial function and transcriptome as well as lipid metabolism in in vivo-derived oocytes and in vitro grown and matured (IVGM) oocytes under atmospheric (20%) and physiological (7%) O2 concentration. We used single-cell RNA-sequencing as well as Gene Ontology and KEGG analyses to identify the molecular pathways affecting developmental competence of oocytes. Oocytes grown under 20% O2 conditions showed significant decrease in mitochondrial membrane potential, upregulation of ceramide synthesis pathway-associated genes, and high ceramide accumulation compared with oocytes grown under 7% O2 conditions and in vivo-grown oocytes. This suggests that excess ceramide level causes mitochondrial dysfunction and poor developmental ability of the oocytes. Mitochondrial DNA copy number was lower in IVGM oocytes irrespective of O2 concentration in culture, although there was no common abnormality in the expression of genes related to mitochondrial biosynthesis. In contrast, some oocytes produced under 7% O2 conditions showed gene expression profiles similar to those of in vivo-grown oocytes. In these oocytes the expression of transcription factors, including Nobox, was restored. Nobox expression correlated with the expression of genes essential for oocyte development. Thus, Nobox may contribute to the establishment of oocyte competency before and after the growth phase. The comprehensive analysis of IVGM oocytes presented here provides a platform for elucidating the mechanism underlying functional oocyte production in vivo.


2021 ◽  
Author(s):  
◽  
Ya Zhang

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia resulting from progressive loss of β-cell insulin secretion frequently on the background of insulin resistance. T2DM, also known as non-insulin-dependent diabetes, accounts for more than 90% of all cases of diabetes. Insulin resistance (IR) refers to the reduced sensitivity of peripheral tissues to insulin and is one of the important triggers of type 2 diabetes. Sargassum fusiforme polysaccharide exhibits diverse biological activities, and more and more studies have shown it has a significant effect in improving insulin resistance with almost no side effects. Sargassum fusiforme fucoidan (SFF) is one of the main active components with active ingredients such as antioxidants and hypoglycemic lipids. However, the ameliorative effects of SFF on high-fat diet-induced insulin resistance mice and its underlying physiological mechanisms are not clear. Hence, the polysaccharides were extracted and purified from Sargassum fusiforme, and fucoidan (SFF), which has good antioxidant activity, was screened using a drosophila melanogaster aging model. The effect of SFF on the amelioration of insulin resistance in mice was investigated with a high-fat obese insulin resistance mice model. By gut microbiota and metabolomics techniques, the effect of SFF on intestinal metabolites and its mechanism of alleviate IR were investigated. After treatment with 200 mg/kg SFF for 8 weeks, it was found that SFF could reduce body weight, fasting blood glucose and homa-IR in insulin resistance mice. SFF could effectively activate Nrf2/ARE antioxidant signaling pathway in the liver and promote Nrf2 entry into the nucleus and downstream gene transcription. Metabolomics and intestinal microecology revealed that SFF could upregulate TUDCA level and downregulate ceramide level in mice colon and serum, and this change was dependent on gut microbiota. TUDCA effectively inhibits the FXR/SHP signaling pathway activated by a high-fat diet, thereby reducing the biosynthesis of enteric-derived ceramides. In addition, TUDCA in the liver could compete with Nrf2 to bind Keap1 to reduce the formation of the Nrf2/Keap1 complex, reduce Nrf2 ubiquitination, and thus contribute to Nrf2/ARE signaling activation. In conclusion, fucoidan from S. fusiforme was able to modulate gut microbiota, increased the levels of the intestinal metabolite TUDCA, reduced biosynthesis of entericderived ceramides and activated the Nrf2/ARE pathway, which in turn significantly improved insulin resistance induced by high-fat diet in mice. This study provides a new research idea for the study of brown algae fucoidan in metabolic diseases.


2018 ◽  
Vol 45 (3) ◽  
pp. 1108-1120 ◽  
Author(s):  
Chunqiu Liu ◽  
Peipei Jiang ◽  
Yuanhong Xu ◽  
Meijuan Zheng ◽  
Jinpin Qiao ◽  
...  

Background/Aims: Qing Dai is a prized traditional Chinese medicine whose major component, indirubin, and its derivative, indirubin-3’-monoxime (IDM), have inhibitory effects on the growth of many human tumor cells and pronounced anti-leukemic activities. However, the effects of IDM on mature human erythrocytes are unclear. This study aimed to evaluate the potential impact of IDM on erythrocytes and the mechanisms underlying that impact. Methods: Utilizing flow cytometry and confocal laser scanning microscopy, phosphatidylserine exposure at the cell surface was estimated by annexin V-fluorescein isothiocyanate (FITC). The relative cell size, expressed in arbitrary units, was evaluated by forward scatter in a flow cytometer. Fluo-3 fluorescence was used to bewrite changes in cytosolic Ca2+ activity, reactive oxygen species (ROS) formation was assessed by 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence, and ceramide abundance was evaluated by FITC-conjugated specific antibodies. Results: The 24-h exposure of human erythrocytes to IDM (12 µM) significantly decreased the percentage of annexin V-binding erythrocytes and the intracellular calcium concentration ([Ca2+]i). IDM (3-12 µM) did not significantly modify the ceramide level or DCFH-DA fluorescence. Energy depletion (removal of glucose for 24 hours) significantly increased annexin V binding and Fluo-3 fluorescence and diminished forward scatter, and these effects were significantly mitigated by IDM (12 µM). Moreover, the Ca2+ ionophore ionomycin (1 µM, 60 min) and oxidative stress (30 min exposure to 0.05 mM tert-butyl hydroperoxide, t-BHP) similarly triggered eryptosis, which was also significantly suppressed by IDM. Conclusions: IDM is a novel inhibitor of suicidal erythrocyte death following ionomycin treatment, t-BHP treatment and energy depletion. Thus, IDM may counteract anemia and impairment of microcirculation, at least in part, by inhibition of Ca2+ entry into erythrocytes.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Nitai C. Hait ◽  
Aparna Maiti

Inflammation is part of our body’s response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yasuhide Kuwabara ◽  
Takahiro Horie ◽  
Osamu Baba ◽  
Toru Kita ◽  
Takeshi Kimura ◽  
...  

Rationale: In some type 2 diabetes mellitus (T2D) patients without hypertension, cardiac hypertrophy and attenuated cardiac function are observed, and this insult is termed “diabetic cardiomyopathy.” Tons of evidence suggests that microRNAs are involved in cardiac diseases. However, the functions of microRNAs in the diabetic cardiomyopathy induced by T2D and obesity are not fully understood. Methods and Results: C57BL/6 mice were fed a high-fat diet (HFD) for 20 weeks, which induced obesity and T2D. MicroRNA microarray and real-time PCR revealed that miR-451 levels were significantly increased in the T2D mouse hearts (n=4-5, p<0.05). Because excess supply of saturated fatty acids is a cause of diabetic cardiomyopathy, we stimulated neonatal rat cardiac myocytes (NRCMs) with palmitate in physiological albumin concentration and confirmed that miR-451 expression was increased in a dose-dependent manner (n=6-12, p<0.01). Loss of miR-451 function ameliorated palmitate-induced lipotoxicity in NRCMs (n=4, p<0.05). Calcium-binding protein 39 (Cab39) is a scaffold protein of liver kinase B1 (LKB1), an upstream kinase of AMP-activated protein kinase (AMPK). Cab39 was a direct target of miR-451 in NRCMs and Cab39 overexpression rescued the palmitate-induced lipotoxicity in NRCMs (n=4, p<0.01). To clarify miR-451 functions in vivo, we generated cardiomyocyte-specific miR-451 knockout (cKO) mice. HFD-induced cardiac hypertrophy and contractile reserves were ameliorated in cKO mice compared with HFD-fed control mice. Protein levels of Cab39 and phosphorylated AMPK were increased and phosphorylated mammalian target of rapamycin (mTOR) was reduced in HFD-fed cKO mouse hearts compared with HFD-fed control mouse hearts (n=10-12, p<0.05). We also measured the lipotoxic intermediates, triglyceride and ceramide, in these mouse hearts using HPLC-evaporative light scattering detector (ELSD). Although there was no difference in triglyceride levels (n=3-5), ceramide level was decreased in HFD-fed cKO mice compared with HFD-fed control mice (n=3-5, p<0.05). Conclusions: Our results indicate that miR-451 exacerbates diabetic cardiomyopathy. miR-451 is a potential therapeutic target for cardiac disease caused by T2D and obesity.


2014 ◽  
Vol 95 (3) ◽  
pp. 402-404
Author(s):  
M R Bagautdinov

Aim. To study of liver and sceletal muscle ceramides in alloxan-induced diabetes at different periods after alloxan exposure. Methods. Repeated experiments were performed on white male rats. Diabetes was modeled by alloxan hydrochloride solution intraperitoneal injection. The disease development was monitored using clinical and laboratory parameters. Ceramides in tissues were determined in intact animals (control), at the 10, 20, 30, 45 and 60 day after the alloxan injection. Ceramides level in the plates was determined by thin layer chromatography using the external standard. Results. In intact animals, ceramides level in liver was twice as high as in muscle. At all terms after alloxan injection, ceramide level was significantly higher compared to controls, and was in muscle compared to liver, with similar change pattern. Up to the 20th day, a significant increase of ceramide level was observed compared to control (eightfold in liver and sevenfold in muscle). By 30th day, a partial recovery was registered, followed by subsequent increase of ceramide level. This indicates the influence of compensation mechanisms in the early stages of the experiment with further decompensation on late stages. Conclusion. In alloxan-induced type 1 diabetes, ceramide level in insulin-dependent tissues depends on the term after the alloxan injection; the findings are of great importance for the research of secondary insulin resistance, as well as other diabetes-associated pathological conditions, exact mechanisms.


2011 ◽  
Vol 24 (4) ◽  
pp. 218-223 ◽  
Author(s):  
Y. Tokudome ◽  
M. Jinno ◽  
H. Todo ◽  
T. Kon ◽  
K. Sugibayashi ◽  
...  
Keyword(s):  

2011 ◽  
Vol 34 (6) ◽  
pp. 912-916 ◽  
Author(s):  
Kyeong-Mi Choi ◽  
Youn-Sun Lee ◽  
Mi-Hwa Choi ◽  
Dong-Mi Sin ◽  
Seunghyun Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document