Clemaichinenoside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro through activating the Nrf2/HO‐1 signalling pathway

2019 ◽  
Vol 47 (3) ◽  
pp. 495-502
Author(s):  
Jie Feng ◽  
Ranran Kong ◽  
Liyi Xie ◽  
Wanhong Lu ◽  
Yali Zhang ◽  
...  
2005 ◽  
Vol 288 (2) ◽  
pp. F308-F314 ◽  
Author(s):  
Alexei G. Basnakian ◽  
Norishi Ueda ◽  
Xiaoman Hong ◽  
Valentin E. Galitovsky ◽  
Xiaoyan Yin ◽  
...  

Ceramide is known to play a role in the cell signaling pathway involved in apoptosis. Most studies suggest that enhanced ceramide generation is the result of hydrolysis of sphingomyelin by sphingomyelinases. However, the role of ceramide synthase in enhanced ceramide generation has not been previously examined in hypoxia-reoxygenation injury. In the present study, we demonstrated that 60-min hypoxia of rat renal tubular epithelial NRK-52E cells in a gas chamber with 95% N2-5% CO2 with glucose deprivation resulted in a significant increase in ceramide generation. The ceramide level further increased after reoxygenation for 60 min. Exposure of cells to hypoxia-reoxygenation resulted in a significant increase in ceramide synthase activity without any significant change in acid or neutral sphingomyelinase. The hypoxia-reoxygenation of NRK-52E cells was also associated with the release of endonuclease G (EndoG) from mitochondria to cytoplasm measured by Western blot analysis and endonuclease activity assay. It further led to the fragmentation of DNA and cell death. A specific inhibitor of ceramide synthase, fumonisin B1 (50 μM), suppressed hypoxia-reoxygenation-induced ceramide generation and provided protection against hypoxia-reoxygenation-induced EndoG release, DNA fragmentation, and cell death. Taken together, our data suggest that hypoxia-reoxygenation results in an activation of ceramide synthase rather than sphingomyelinase and that ceramide synthase-dependent ceramide generation is a key modulator of EndoG-mediated cytotoxicity in hypoxia-reoxygenation injury to renal tubular epithelial cells.


2008 ◽  
Vol 295 (6) ◽  
pp. F1689-F1695 ◽  
Author(s):  
A. C. Breggia ◽  
D. M. Wojchowski ◽  
J. Himmelfarb

Erythropoietin has emerged as a potential therapy for the treatment of ischemic tissue injury. In erythroid cells, the JAK2/Y343/STAT5 signaling axis has been shown to be necessary for stress but not steady-state erythropoiesis. The requirement for STAT5 activation in erythropoietin-mediated protection from ischemic injury has not been well-studied. To answer this question, we induced reproducible necrotic ischemic injury in primary mouse renal tubular epithelial cells (RTEC) in vitro. Using RTEC from erythropoietin receptor mutant mice with differential STAT5 signaling capabilities, we demonstrated first, that EPO administration either before or during injury significantly protects against mild-moderate but not severe necrotic cell death; and second, the JAK2/Y343/STAT5 signaling axis is required for protection against ischemic injury in primary mouse RTEC. In addition, we identified Pim-3, a prosurvival STAT5 target gene, as responsive to EPO in the noninjured kidney both in vitro and in vivo.


2012 ◽  
Vol 302 (8) ◽  
pp. F1055-F1062 ◽  
Author(s):  
Farah Tasnim ◽  
Daniele Zink

Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document