Antagonistic Effects of Bacterial Endotoxin and Phytohaemagglutinin upon the Primary Immune Response

1972 ◽  
Vol 43 (2) ◽  
pp. 161-171
Author(s):  
F. Kierszenbaum
1994 ◽  
Vol 645 (1-2) ◽  
pp. 150-156 ◽  
Author(s):  
Alain M. Gardier ◽  
Sébastien Kachaner ◽  
Elisabeth Khan Shaghaghi ◽  
Christian Blot ◽  
Claude Bohuon ◽  
...  

2002 ◽  
Vol 103 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Nicole Eibl ◽  
Martin Spatz ◽  
Gottfried F. Fischer ◽  
Wolfgang R. Mayr ◽  
Aysen Samstag ◽  
...  

2018 ◽  
Vol 109 (2) ◽  
pp. 248-256
Author(s):  
E. Meng ◽  
J. Li ◽  
B. Tang ◽  
Y. Hu ◽  
T. Qiao ◽  
...  

AbstractAlthough parasites and microbial pathogens are both detrimental to insects, little information is currently available on the mechanism involved in how parasitized hosts balance their immune responses to defend against microbial infections. We addressed this in the present study by comparing the immune response between unparasitized and parasitized pupae of the chrysomelid beetle, Octodonta nipae (Maulik), to Escherichia coli invasion. In an in vivo survival assay, a markedly reduced number of E. coli colony-forming units per microliter was detected in parasitized pupae at 12 and 24 h post-parasitism, together with decreased phagocytosis and enhanced bactericidal activity at 12 h post-parasitism. The effects that parasitism had on the mRNA expression level of selected antimicrobial peptides (AMPs) of O. nipae pupae showed that nearly all transcripts of AMPs examined were highly upregulated during the early and late parasitism stages except defensin 2B, whose mRNA expression level was downregulated at 24 h post-parasitism. Further elucidation on the main maternal fluids responsible for alteration of the primary immune response against E. coli showed that ovarian fluid increased phagocytosis at 48 h post-injection. These results indicated that the enhanced degradation of E. coli in parasitized pupae resulted mainly from the elevated bactericidal activity without observing the increased transcripts of target AMPs. This study contributes to a better understanding of the mechanisms involved in the immune responses of a parasitized host to bacterial infections.


2020 ◽  
Vol 50 (4) ◽  
Author(s):  
Marco Aurélio Chiara Silva ◽  
Miriele Caroline da Silva ◽  
João Waine Pinheiro ◽  
Raul Jorge Hernan Castro-Goméz ◽  
Alice Eiko Murakami ◽  
...  

ABSTRACT: Advances in the fields of glycobiology and immunology have provided many insights into the role of carbohydrate-protein interactions in the immune system. Jacalin of Artocarpus integrifolia (JCA) and structural mannoprotein of Saccharomyces uvarum (MPS) are molecules with immunomodulatory properties. JCA is an IgA human lectin binding molecule that causes the mitogenic stimulation of immune cells, production of cytokines, chemotaxis, and activation of leukocytes. Studies on the immunomodulatory properties of JCA and MPS in mammals and fish suggest that they have an action on antibody production. The aim of this study was to investigate the possible action of JCA and MPS on the production of specific antibodies in laying hens. For this, laying hens were inoculated with an intra abdominal injection of sheep red blood cells (SRBC) with either JCA (0.075 µg, 0.75 µg, and 7.5 µg) or MPS (20 µg and 100 µg). Levels of anti-SRBC antibodies of the IgY, IgM, and IgA classes were evaluated by ELISA. Results showed that JCA and MPS have immunomodulatory effects on levels of anti-SRBC IgM, IgA, and IgY. An immunostimulatory effect of JCA was observed in primary immune response on anti-SRBC IgY, while an inhibitory effect of JCA and MPS was observed in secondary immune response on the production of IgM and IgA anti-SRBC. These results suggested that MPS and JCA have immunomodulatory effects on antibody production and could be used in future studies on humoral immune response in poultry.


Sign in / Sign up

Export Citation Format

Share Document