The Failure of Newborn Mice Infected with Escherichia coli to Accelerate Neutrophil Production Correlates with Their Failure to Increase Transcripts for Granulocyte Colony-Stimulating Factor and Interleukin-6

Neonatology ◽  
1993 ◽  
Vol 64 (5) ◽  
pp. 331-340 ◽  
Author(s):  
Kenneth W. Liechty ◽  
Kurt R. Schibler ◽  
Robin K. Ohls ◽  
Sherrie L. Perkins ◽  
Robert D. Christensen
2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2583-2590 ◽  
Author(s):  
Fulu Liu ◽  
Jennifer Poursine-Laurent ◽  
Huai Yang Wu ◽  
Daniel C. Link

Multiple hematopoietic cytokines can stimulate granulopoiesis; however, their relative importance in vivo and mechanisms of action remain unclear. We recently reported that granulocyte colony-stimulating factor receptor (G-CSFR)-deficient mice have a severe quantitative defect in granulopoiesis despite which phenotypically normal neutrophils were still detected. These results confirmed a role for the G-CSFR as a major regulator of granulopoiesis in vivo, but also indicated that G-CSFR independent mechanisms of granulopoiesis must exist. To explore the role of interleukin-6 (IL-6) in granulopoiesis, we generated IL-6 × G-CSFR doubly deficient mice. The additional loss of IL-6 significantly worsened the neutropenia present in young adult G-CSFR–deficient mice; moreover, exogenous IL-6 stimulated granulopoiesis in vivo in the absence of G-CSFR signals. Near normal numbers of myeloid progenitors were detected in the bone marrow of IL-6 × G-CSFR–deficient mice and their ability to terminally differentiate into mature neutrophils was observed. These results indicate that IL-6 is an independent regulator of granulopoiesis in vivo and show that neither G-CSFR or IL-6 signals are required for the commitment of multipotential progenitors to the myeloid lineage or for their terminal differentiation.


1995 ◽  
Vol 17 (4) ◽  
pp. 249-254 ◽  
Author(s):  
Yuh-Min Chen ◽  
Jacqueline Whang-Peng ◽  
Jacqueline-Ming Liu ◽  
Sheng-Yuan Wang ◽  
Chun-Ming Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document