Impact of Vitamin D on Amyloid Precursor Protein Processing and Amyloid-β Peptide Degradation in Alzheimer's Disease

2013 ◽  
Vol 13 (2-3) ◽  
pp. 75-81 ◽  
Author(s):  
Marcus O.W. Grimm ◽  
Johannes Lehmann ◽  
Janine Mett ◽  
Valerie C. Zimmer ◽  
Sven Grösgen ◽  
...  
2017 ◽  
Vol 292 (9) ◽  
pp. 3751-3767 ◽  
Author(s):  
Hermeto Gerber ◽  
Fang Wu ◽  
Mitko Dimitrov ◽  
Guillermo M. Garcia Osuna ◽  
Patrick C. Fraering

2014 ◽  
Vol 223 ◽  
pp. 114-122 ◽  
Author(s):  
MiMi P. Macias ◽  
Amanda M. Gonzales ◽  
Ashley L. Siniard ◽  
Aaron W. Walker ◽  
Jason J. Corneveaux ◽  
...  

2015 ◽  
Vol 470 (3) ◽  
pp. 303-317 ◽  
Author(s):  
Wan Ning Vanessa Chow ◽  
Jacky Chi Ki Ngo ◽  
Wen Li ◽  
Yu Wai Chen ◽  
Ka Ming Vincent Tam ◽  
...  

Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 (SGK1) attenuates amyloid precursor protein (APP) processing via regulation of FE65–APP interaction.


2007 ◽  
Vol 35 (5) ◽  
pp. 974-979 ◽  
Author(s):  
R.B. Parsons ◽  
B.M. Austen

The correct assembly of the BACE (β-site amyloid precursor protein-cleaving enzyme or β-secretase) complex and its subsequent trafficking to cellular compartments where it associates with the APP (amyloid precursor protein) is essential for the production of Aβ (amyloid β-peptide), the protein whose aggregation into senile plaques is thought to be responsible for the pathogenesis of AD (Alzheimer's disease). These processes rely upon both transient and permanent BACE–protein interactions. This review will discuss what is currently known about these BACE–protein interactions and how they may reveal novel therapeutic targets for the treatment of AD.


2002 ◽  
Vol 158 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Qi Chen ◽  
Hideo Kimura ◽  
David Schubert

Modifier of cell adhesion protein (MOCA; previously called presenilin [PS] binding protein) is a DOCK180-related molecule, which interacts with PS1 and PS2, is localized to brain areas involved in Alzheimer's disease (AD) pathology, and is lost from the soluble fraction of sporadic Alzheimer's disease (AD) brains. Because PS1 has been associated with γ-secretase activity, MOCA may be involved in the regulation of β-amyloid precursor protein (APP) processing. Here we show that the expression of MOCA decreases both APP and amyloid β-peptide secretion and lowers the rate of cell-substratum adhesion. In contrast, MOCA does not lower the secretion of amyloid precursor-like protein (APLP) or several additional type 1 membrane proteins. The phenotypic changes caused by MOCA are due to an acceleration in the rate of intracellular APP degradation. The effect of MOCA expression on the secretion of APP and cellular adhesion is reversed by proteasome inhibitors, suggesting that MOCA directs nascent APP to proteasomes for destruction. It is concluded that MOCA plays a major role in APP metabolism and that the effect of MOCA on APP secretion and cell adhesion is a downstream consequence of MOCA-directed APP catabolism. This is a new mechanism by which the expression of APP is regulated.


Sign in / Sign up

Export Citation Format

Share Document