scholarly journals Ezrin/Exocyst Complex Regulates Mucin 5AC Secretion Induced by Neutrophil Elastase in Human Airway Epithelial Cells

2015 ◽  
Vol 35 (1) ◽  
pp. 326-338 ◽  
Author(s):  
Qi Li ◽  
Na Li ◽  
Chun-Yi Liu ◽  
Rui Xu ◽  
Victor P. Kolosov ◽  
...  

Background/Aim: Increased mucin secretion is a characteristic feature of many chronic airway diseases, particularly during periods of exacerbation; however, the exact mechanism of mucin secretion remains unclear. Ezrin, which is a specific marker of apical membranes, is predominantly concentrated in exocyst-rich cell surface structures, crosslinking the actin cytoskeleton with the plasma membrane. In the present study, we examined whether Ezrin is involved in mucin 5AC (MUC5AC) secretion after neutrophil elastase (NE) attack, and we investigated the role of the exocyst complex docking protein Sec3 in this process. Methods: NE was used as a stimulator in a 16HBE14o- cell culture model. The expression and location of Ezrin and Sec3 were investigated, and the interaction between Ezrin and Sec3 in 16HBE14o-cells was assayed after treatment with NE, Ezrin siRNA, Sec3 siRNA, neomycin or PIP2-Ab. Results: We found that Ezrin was highly expressed in the bronchi of humans with chronic airway diseases. NE induced robust MUC5AC protein secretion. The Ezrin siRNA, Sec3 siRNA, and neomycin treatments led to impaired MUC5AC secretion in cells. Both Ezrin and Sec3 were recruited primarily to the cytoplasmic membrane after NE stimulation, and the neomycin and PIP2-Ab treatments abrogated this effect. Immunoprecipitation analysis revealed that Ezrin and Sec3 combined to form complexes; however, these complexes could not be detected in Ezrin∆1-333 mutant-transfected cells, even when PIP2 was added. Conclusions: These results demonstrate that Ezrin/Sec3 complexes are essential for MUC5AC secretion in NE-stimulated airway epithelial cells and that PIP2 is of critical importance in the formation of these complexes.

2007 ◽  
Vol 21 (5) ◽  
pp. 462-465 ◽  
Author(s):  
Ho Jin Heo ◽  
Cheolsu Kim ◽  
Hyun Jae Lee ◽  
Young Sik Kim ◽  
Sam Sik Kang ◽  
...  

2019 ◽  
Vol 8 (5) ◽  
pp. 704-710
Author(s):  
Soyoung Kwak ◽  
Yoon Seok Choi ◽  
Hyung Gyun Na ◽  
Chang Hoon Bae ◽  
Si-Youn Song ◽  
...  

Abstract Mucus plays an important role in protecting the respiratory tract from irritants. However, mucus hypersecretion is a major indicator of airway diseases. 1,2-Benzisothiazolin-3-one (BIT), as a microbicide, induces asthmatic inflammation. Therefore, we focused on the effects of BIT-related mucin secretion in airway epithelial cells. Our in vivo study showed increased mucus and MUC5AC expressions in the bronchioles of mice that inhaled BIT. For investigating the signaling pathways, we performed experiments in human airway epithelial cells. BIT induced the MUC5AC expression and significantly increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The specific inhibitors of ERK1/2, p38, and NF-κB blocked the BIT-induced MUC5AC expression. Therefore, these results suggest that BIT induces the MUC5AC expression via the ERK1/2, p38, and NF-κB pathways in human airway epithelial cells, which may be involved in mucus hypersecretion associated with airway inflammatory diseases.


1997 ◽  
Vol 272 (5) ◽  
pp. L888-L896 ◽  
Author(s):  
S. Van Wetering ◽  
S. P. Mannesse-Lazeroms ◽  
M. A. Van Sterkenburg ◽  
M. R. Daha ◽  
J. H. Dijkman ◽  
...  

Neutrophils play an important role in inflammatory processes in the lung and may cause tissue injury through, for example, release of proteinases such as neutrophil elastase. In addition to neutrophil elastase, stimulated neutrophils also release small nonenzymatic and cationic polypeptides termed defensins. The aim of the present study was to investigate whether defensins induce interleukin (IL)-8 expression in cells of the A549 lung epithelial cell line and in human primary bronchial epithelial cells (PBEC). Supernatants of defensin-treated A549 cells contained increased neutrophil chemotactic activity (16-fold) that was inhibited by antibodies against IL-8. Concurrently, within 3 and 6 h, defensins significantly increased the IL-8 levels in supernatants of both A549 cells (n = 6, P < 0.05 and P < 0.01, respectively) and PBEC (n = 4, P < 0.001 and P < 0.001, respectively). This defensin-induced increase was fully inhibited by the serine proteinase inhibitor alpha 1-proteinase inhibitor. In addition, defensins also increased IL-8 mRNA levels (12-fold); this increase was dependent on de novo mRNA synthesis and did not require protein synthesis. Furthermore, defensins did not affect IL-8 mRNA stability, indicating that the enhanced IL-8 expression was due to increased transcription. Our findings suggest that defensins, released by stimulated neutrophils, stimulate IL-8 synthesis by airway epithelial cells and thus may mediate the recruitment of additional neutrophils into the airways.


2002 ◽  
Vol 283 (3) ◽  
pp. L612-L618 ◽  
Author(s):  
Helen C. Rodgers ◽  
Linhua Pang ◽  
Elaine Holland ◽  
Lisa Corbett ◽  
Simon Range ◽  
...  

Interleukin (IL)-8, the C-X-C chemokine, is a potent neutrophil chemoattractant that has been implicated in a number of inflammatory airway diseases such as cystic fibrosis. Here we tested the hypothesis that bradykinin, an inflammatory mediator and chloride secretagogue, would increase IL-8 generation in airway epithelial cells through autocrine generation of endogenous prostanoids. Bradykinin increased IL-8 generation in both a non-cystic fibrosis (A549) and cystic fibrosis epithelial cell line (CFTE29[Formula: see text]) that was inhibited by the nonselective cyclooxygenase (COX) inhibitor indomethacin and the COX-2 selective inhibitor NS-398. COX-2 was the only isoform of COX expressed in both cell lines. Furthermore, the COX substrate arachidonic acid and exogenous prostaglandin E2 both increased IL-8 release in A549 cells. These results suggest that bradykinin may contribute to neutrophilic inflammation in the airway by generation of IL-8 from airway epithelial cells. The dependence of this response on endogenous production of prostanoids by COX-2 suggests that selective COX-2 inhibitors may have a role in the treatment of airway diseases characterized by neutrophilic inflammation such as cystic fibrosis or chronic obstructive pulmonary disease.


1993 ◽  
Vol 265 (3) ◽  
pp. L286-L292 ◽  
Author(s):  
J. M. Abbinante-Nissen ◽  
L. G. Simpson ◽  
G. D. Leikauf

Airway inflammation is often associated with the infiltration of activated neutrophils and subsequent protease release. Although aiding in the digestion and phagocytosis of foreign proteins and microorganisms, neutrophil proteases can indiscriminately damage healthy lung tissue. In the conducting airway, proteases, particularly neutrophil elastase, are counter-balanced by several antiproteases, including secretory leukocyte protease inhibitor (SLPI). SLPI can be produced locally by a number of cells including the airway epithelial cell. To examine the effects of neutrophil granule components on SLPI transcript levels, airway epithelial cells were treated (up to 96 h) with elastase, other proteases, or enzymes isolated from human sputum. We found that neutrophil elastase increased SLPI transcript levels in primary and transformed human airway epithelial cells in a time- and dose-dependent manner. Other neutrophil products, such as cathepsin G, myeloperoxidase, and lysozyme, had little or no effect on SLPI transcript levels. However, two nonneutrophil proteases, trypsin and pancreatic elastase, also increased SLPI transcript levels at higher doses than that required of neutrophil elastase. Two inflammatory cytokines, tumor necrosis factor-alpha and interleukin-8, produced little or no effect on SLPI transcript levels. This study demonstrates one way in which SLPI is regulated, via a protease that it inhibits, neutrophil elastase.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052093210
Author(s):  
Jie Yang

Azithromycin (AZM) has been used to treat chronic inflammatory airway diseases because it regulates cell–cell contact between airway epithelial cells. Airway mucus hypersecretion is an important component of chronic respiratory diseases. Mucin 5AC (MUC5AC) is the major mucin produced by airway epithelial cells, and hypersecretion of MUC5AC is a sign of various pulmonary inflammatory diseases. Recently, it was found that matrix metallopeptidase 9 is involved in mucus hypersecretion. Moreover, AZM can inhibit the ability of TNF-α-to induce interleukin (IL)-8 production. This review focuses on the effects on AZM that may be beneficial in inhibiting MUC5AC, matrix metalloprotease-9 and IL-8 production in airway epithelial cells. In addition, recent studies have begun to assess activation of mitogen-activated protein kinase (MAPK) signaling pathways in response to AZM. Understanding these new developments may be helpful for clinicians.


2013 ◽  
Vol 4 ◽  
Author(s):  
Kenneth B. Adler ◽  
Michael J. Tuvim ◽  
Burton F. Dickey

2019 ◽  
Vol 316 (1) ◽  
pp. L58-L70 ◽  
Author(s):  
Veronika E. Winkelmann ◽  
Kristin E. Thompson ◽  
Kathrin Neuland ◽  
Ana M. Jaramillo ◽  
Giorgio Fois ◽  
...  

Mucus clearance provides an essential innate defense mechanism to keep the airways and lungs free of particles and pathogens. Baseline and stimulated mucin secretion from secretory airway epithelial cells need to be tightly regulated to prevent mucus hypersecretion and mucus plugging of the airways. It is well established that extracellular ATP is a potent stimulus for regulated mucus secretion. Previous studies revealed that ATP acts via metabotropic P2Y2purinoreceptors on goblet cells. Extracellular ATP, however, is also a potent agonist for ionotropic P2X purinoreceptors. Expression of several P2X isoforms has been reported in airways, but cell type-specific expression and the function thereof remained elusive. With this study, we now provide evidence that P2X4is the predominant P2X isoform expressed in secretory airway epithelial cells. After IL-13 treatment of either human primary tracheal epithelial cells or mice, P2X4expression is upregulated in vitro and in vivo under conditions of chronic inflammation, mucous metaplasia, and hyperplasia. Upregulation of P2X4is strongest in MUC5AC-positive goblet cells. Moreover, activation of P2X4by extracellular ATP augments intracellular Ca2+signals and mucin secretion, whereas Ca2+signals and mucin secretion are dampened by inhibition of P2X4receptors. These data provide new insights into the purinergic regulation of mucin secretion and add to the emerging picture that P2X receptors modulate exocytosis of large secretory organelles and secretion of macromolecular vesicle cargo.


2013 ◽  
Vol 304 (8) ◽  
pp. L511-L518 ◽  
Author(s):  
Shijing Fang ◽  
Anne L. Crews ◽  
Wei Chen ◽  
Joungjoa Park ◽  
Qi Yin ◽  
...  

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document