Bradykinin increases IL-8 generation in airway epithelial cells via COX-2-derived prostanoids

2002 ◽  
Vol 283 (3) ◽  
pp. L612-L618 ◽  
Author(s):  
Helen C. Rodgers ◽  
Linhua Pang ◽  
Elaine Holland ◽  
Lisa Corbett ◽  
Simon Range ◽  
...  

Interleukin (IL)-8, the C-X-C chemokine, is a potent neutrophil chemoattractant that has been implicated in a number of inflammatory airway diseases such as cystic fibrosis. Here we tested the hypothesis that bradykinin, an inflammatory mediator and chloride secretagogue, would increase IL-8 generation in airway epithelial cells through autocrine generation of endogenous prostanoids. Bradykinin increased IL-8 generation in both a non-cystic fibrosis (A549) and cystic fibrosis epithelial cell line (CFTE29[Formula: see text]) that was inhibited by the nonselective cyclooxygenase (COX) inhibitor indomethacin and the COX-2 selective inhibitor NS-398. COX-2 was the only isoform of COX expressed in both cell lines. Furthermore, the COX substrate arachidonic acid and exogenous prostaglandin E2 both increased IL-8 release in A549 cells. These results suggest that bradykinin may contribute to neutrophilic inflammation in the airway by generation of IL-8 from airway epithelial cells. The dependence of this response on endogenous production of prostanoids by COX-2 suggests that selective COX-2 inhibitors may have a role in the treatment of airway diseases characterized by neutrophilic inflammation such as cystic fibrosis or chronic obstructive pulmonary disease.

2007 ◽  
Vol 292 (1) ◽  
pp. L267-L277 ◽  
Author(s):  
Philippe Dje N'Guessan ◽  
Mirabelle O. Etouem ◽  
Bernd Schmeck ◽  
Andreas C. Hocke ◽  
Stefanie Scharf ◽  
...  

Legionella pneumophila causes community- and hospital-acquired pneumonia. Lung airway and alveolar epithelial cells comprise an important barrier against airborne pathogens. Cyclooxygenase (COX) and microsomal PGE2synthase-1 (mPGES-1)-derived prostaglandins like prostaglandin E2(PGE2) are considered as important regulators of lung function. Herein we tested the hypothesis that L. pneumophila induced COX-2 and mPGES-1-dependent PGE2production in pulmonary epithelial cells. Legionella induced the release of PGE2in primary human small airway epithelial cells and A549 cells. This was accompanied by an increased expression of COX-2 and mPGES-1 as well as an increased PLA2activity in infected cells. Deletion of the type IV secretion system Dot/Icm did not impair Legionella-related COX-2 expression or PGE2release in A549 cells. L. pneumophila induced the degradation of IκBα and activated NF-κB. Inhibition of IKK blocked L. pneumophila-induced PGE2release and COX-2 expression. We noted activation of p38 and p42/44 MAP kinase in Legionella-infected A549 cells. Moreover, membrane translocation and activation of PKCα was observed in infected cells. PKCα and p38 and p42/44 MAP kinase inhibitors reduced PGE2release and COX-2 expression. In summary, PKCα and p38 and p42/44 MAP kinase controlled COX-2 expression and subsequent PGE2release by Legionella-infected lung epithelial cells. These pathways may significantly contribute to the host response in Legionnaires' disease.


1995 ◽  
Vol 268 (1) ◽  
pp. C243-C251 ◽  
Author(s):  
M. E. Egan ◽  
E. M. Schwiebert ◽  
W. B. Guggino

When nonepithelial cell types expressing the delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) mutation are grown at reduced temperatures, the mutant protein can be properly processed. The effect of low temperatures on Cl- channel activity in airway epithelial cells that endogenously express the delta F508-CFTR mutation has not been investigated. Therefore, we examined the effect of incubation temperature on both CFTR and outwardly rectifying Cl- channel (ORCC) activity in normal, in cystic fibrosis (CF)-affected, and in wild-type CFTR-complemented CF airway epithelia with use of a combination of inside-out and whole cell patch-clamp recording, 36Cl- efflux assays, and immunocytochemistry. We report that incubation of CF-affected airway epithelial cells at 25-27 degrees C is associated with the appearance of a protein kinase A-stimulated CFTR-like Cl- conductance. In addition to the appearance of CFTR Cl- channel activity, there is, however, a decrease in the number of active ORCC when cells are grown at 25-27 degrees C, suggesting that the decrease in incubation temperature may be associated with multiple alterations in ion channel expression and/or regulation in airway epithelial cells.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3514
Author(s):  
Yang Cai ◽  
Myrthe S. Gilbert ◽  
Walter J. J. Gerrits ◽  
Gert Folkerts ◽  
Saskia Braber

Emerging antimicrobial-resistant pathogens highlight the importance of developing novel interventions. Here, we investigated the anti-inflammatory properties of Fructo-oligosaccharides (FOS) in calf lung infections and in airway epithelial cells stimulated with pathogens, and/or bacterial components. During a natural exposure, 100 male calves were fed milk replacer with or without FOS for 8 weeks. Then, immune parameters and cytokine/chemokine levels in the bronchoalveolar lavage fluid (BALF) and blood were measured, and clinical scores were investigated. Calf primary bronchial epithelial cells (PBECs) and human airway epithelial cells (A549) were treated with Mannheimia haemolytica, lipopolysaccharides (LPS), and/or flagellin, with or without FOS pretreatment. Thereafter, the cytokine/chemokine levels and epithelial barrier function were examined. Relative to the control (naturally occurring lung infections), FOS-fed calves had greater macrophage numbers in BALF and lower interleukin (IL)-8, IL-6, and IL-1β concentrations in the BALF and blood. However, FOS did not affect the clinical scores. At slaughter, FOS-fed calves had a lower severity of lung lesions compared to the control. Ex vivo, FOS prevented M. haemolytica-induced epithelial barrier dysfunction. Moreover, FOS reduced M. haemolytica- and flagellin-induced (but not LPS-induced) IL-8, TNF-α, and IL-6 release in PBECs and A549 cells. Overall, FOS had anti-inflammatory properties during the natural incidence of lung infections but had no effects on clinical symptoms.


1995 ◽  
Vol 269 (2) ◽  
pp. C451-C456 ◽  
Author(s):  
E. M. Schwiebert ◽  
D. C. Gruenert ◽  
W. B. Guggino ◽  
B. A. Stanton

Previously we demonstrated that the heterotrimeric G protein, G alpha i-2, inhibits cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl-) channels in human airway epithelial cells (E. M. Schwiebert, F. Gesek, L. Ercolani, C. Wjasow, D. C. Gruenert, and B. A. Stanton. Am. J. Physiol. 267 (Cell Physiol. 36): C272-C281, 1994, and E. M. Schwiebert, N. L. Kizer, D. C. Gruenert, and B. A. Stanton. Proc. Natl. Acad. Sci. USA 89: 10623-10627, 1992). The goal of the present study was to determine if G proteins also regulate outwardly rectifying Cl- channels (ORCC), a distinct class of Cl- channels regulated defectively by protein kinase A (PKA) in cystic fibrosis (CF). To this end, we used the patch-clamp technique to study ORCC in a normal human airway epithelial cell line (9HTEo-) that expresses CFTR and ORCC. Stimulation of G proteins with GTP and GTP gamma S decreased the single-channel open probability (Po) of ORCC, whereas inhibition of G proteins by GDP beta S increased the Po. Moreover, pertussis toxin (PTX), an uncoupler of Gi and G(o) subclasses of heterotrimeric G proteins, also increased the Po. Purified G alpha i-2 decreased the Po. In contrast, other PTX-sensitive G proteins, G alpha i-1, G alpha i-3, and G alpha o, had no effect on Po. We propose that G alpha i-2 couples to a receptor whose agonist negatively regulates ORCC in human airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document