Does Sodium Reabsorption Influence Proximal Tubular Transport of Weak Electrolytes?

2015 ◽  
pp. 17-23
Author(s):  
P. Deetjen
2000 ◽  
Vol 279 (4) ◽  
pp. R1268-R1276 ◽  
Author(s):  
Paul P. Leyssac ◽  
Niels-Henrik Holstein-Rathlou ◽  
Ole Skøtt

Inconsistencies in previous reports regarding changes in early distal NaCl concentration (EDNaCl) and renin secretion during osmotic diuresis motivated our reinvestigation. After intravenous infusion of 10% mannitol, EDNaCl fell from 42.6 to 34.2 mM. Proximal tubular pressure increased by 12.6 mmHg. Urine flow increased 10-fold, and sodium excretion increased by 177%. Plasma renin concentration (PRC) increased by 58%. Renal blood flow and glomerular filtration rate decreased, however end-proximal flow remained unchanged. After a similar volume of hypotonic glucose (152 mM), EDNaClincreased by 3.6 mM, ( P < 0.01) without changes in renal hemodynamics, urine flow, sodium excretion rate, or PRC. Infusion of 300 μmol NaCl in a smaller volume caused EDNaCl to increase by 6.4 mM without significant changes in PRC. Urine flow and sodium excretion increased significantly. There was a significant inverse relationship between superficial nephron EDNaCl and PRC. We conclude that EDNa decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium reabsorption in distal tubules and collecting ducts.


1990 ◽  
Vol 12 (4) ◽  
pp. 101-127

The preterm, low or very low birth weight (VLBW) infant has several inadequate homeostatic mechanisms, among which renal immaturity is prominent. Maximal renal concentrating ability in the VLBW infant is often less than twice the osmolality of plasma, compared to a fourfold increase in the mature infant. Equally important is the VLBW infant's limited proximal tubular reabsorption of sodium. The mature infant's response to sodium restriction results in over 99.5% of filtered sodium being reabsorbed; in the case of the VLBW infant, sodium reabsorption may be only 97% to 98% from days 4 through 14 of life. As a result of these two important limits, the VLBW infant has a higher water requirement than the full-term infant.


1989 ◽  
Vol 6 (7) ◽  
pp. 614-620 ◽  
Author(s):  
J.-C. Mbanya ◽  
T. H. Thomas ◽  
R. Taylor ◽  
K. G. M. M. Alberti ◽  
R. Wilkinson

2020 ◽  
pp. 5112-5123
Author(s):  
Nine V.A.M. Knoers ◽  
Elena N. Levtchenko

Glycosuria—glucose reabsorption in the proximal tubule is carried out by two different pairs of apical Na+-dependent (SGLT1 and -2) and basolateral Na+-independent (GLUT1 and -2) glucose transporters. Abnormalities in renal glucose transport can be seen in association with other defects of proximal tubular transport. Familial renal glycosuria is a rare autosomal recessive condition caused by mutations in the SGLT2-encoding gene, SLC5A2. Phosphate-handling disorders—the plasma concentration of inorganic phosphate depends on the balance between intestinal absorption, renal excretion, and the internal contribution from bone. Changes of serum phosphate levels can be caused by numerous inherited and acquired conditions. Disorders associated with increased urinary phosphate excretion and low serum phosphate levels produce symptoms that mainly affect the bones: rickets in children and osteomalacia in adults. Magnesium-handling disorders—normal plasma magnesium concentration is achieved by variation of urinary magnesium excretion in response to altered uptake by the intestine. The main site of magnesium absorption is the small bowel, via paracellular simple diffusion at high intraluminal concentrations, and via active transcellular uptake through the magnesium channel TRPM6 at low concentrations. Regulation and fine-tuning of serum magnesium concentration occurs primarily in the kidney. Genetic disorders of magnesium handling include Gitelman’s syndrome. Aminoaciduria and renal Fanconi’s syndrome—most amino acids (except for tryptophan, which is protein bound) are freely filtered by the glomerulus, after which 95 to 99.9% are reabsorbed in the proximal tubules by apical Na+-dependent cotransporters and Na+-independent cotransporters. Aminoaciduria is defined as urinary excretion of more than 5% of the filtered load of an amino acid. Renal Fanconi’s syndrome is characterized by a generalized defect of both Na+-coupled and receptor-mediated proximal tubular transport.


1985 ◽  
Vol 249 (2) ◽  
pp. F299-F307 ◽  
Author(s):  
M. E. Olsen ◽  
J. E. Hall ◽  
J. P. Montani ◽  
A. C. Guyton ◽  
H. G. Langford ◽  
...  

The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 76 (6) ◽  
pp. 653-658 ◽  
Author(s):  
Peter H. Seidelin ◽  
John J. McMurray ◽  
Allan D. Struthers

1. Angiotensin 11 (ANG II; 1 ng min−1 kg−1) or 5% (w/v) d-glucose (placebo) was infused in six normal male volunteers, pretreated with 500 mg of lithium carbonate, who were undergoing maximal water diuresis. 2. This dose of ANG II caused a circulating increment within the physiological range (27 ± 4 to 48 ± 9 pmol/l). 3. Compared with placebo, ANG II caused a significant fall in urinary sodium excretion (113 ± 13 to 82 ± 10 μmol/min). This antinatriuretic effect occurred without a fall in creatinine clearance (107 ± 3 versus 113 ± 3 ml/min). 4. ANG II caused a significant fall in fractional lithium clearance (28 ± 2 to 23 ± 2%). This may indicate a proximal tubular effect of ANG II. 5. ANG II also reduced fractional distal delivery [(sodium clearance plus free water clearance) divided by creatinine clearance], another measure of proximal tubular outflow. A parallel change in these two separate markers of proximal function supports an action of ANG II at this nephron segment. 6. Furthermore, the antinatriuretic effect of ANG II was unlikely to be due to stimulation of aldosterone secretion because (a) the fall in sodium excretion was temporally dissociated from the rise in aldosterone secretion, (b) potassium excretion also tended to fall during ANG II infusion and (c) aldosterone has a distal nephron effect, while, in this study, proximal nephron fractional reabsorption of sodium increased and distal nephron fractional reabsorption of sodium was unchanged. 7. These observations suggest that physiological increments in ANG II can have an antinatriuretic effect in man, which, at least initially, results from increased proximal tubular sodium reabsorption and is independent of the effect of aldosterone.


Sign in / Sign up

Export Citation Format

Share Document