Distal Latencies of Single Evoked Motor Units in Normal and Neuropathic Subjects

2015 ◽  
pp. 272-274
Author(s):  
K. Kunze ◽  
H. I. Peters
Keyword(s):  
2019 ◽  
Vol 25 (28) ◽  
pp. 3005-3010
Author(s):  
Georges Samouri ◽  
Alexandre Stouffs ◽  
Lionel V. Essen ◽  
Olivier Simonet ◽  
Marc De Kock ◽  
...  

Introduction: The monitoring of the curarisation is a unique opportunity to investigate the function of the neuromuscular junction (NMJ) during cancer surgery, especially in frailty-induced and age-related sarcopenia. Method: We conducted a comprehensive literature review in PubMed, without any limit of time related to frailty, sarcopenia, age and response to neuromuscular blockers in the context of cancer surgery. Results: Several modifications appear with age: changes in cardiac output, a decrease in muscle mass and increase in body fat, the deterioration in renal and hepatic function, the plasma clearance and the volume of distribution in elderly are smaller. These changes can be exacerbated in cancer patients. We also find modifications of the NMJ: dysfunctional mitochondria, modifications in the innervation of muscle fibers and motor units, uncoupling of the excitation-contraction of muscle fibers, inflammation. : Neuromuscular blocking agents (NMBAs) compete with acetylcholine and prevent it from fixing itself on its receptor. Many publications reported guidelines for using NMBAs in the elderly, based on studies comparing old people with young people. : No one screened frailty before, and thus, no studies compared frail elderly and non-frail elderly undergoing cancer surgery. Conclusion: Despite many studies about curarisation in the specific populations, and many arguments for a potential interest for investigation, no studies investigated specifically the response to NMBAs in regard of the frailty-induced and age-related sarcopenia.


2006 ◽  
Vol 100 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.


1991 ◽  
Vol 39 (12) ◽  
pp. 1617-1625 ◽  
Author(s):  
M J Szabolcs ◽  
A Windisch ◽  
R Koller ◽  
M Pensch

We developed a method for detecting activity of axonal cholinesterase (CE) and carbonic anhydrase (CA)--markers for motor and sensory nerve fibers (NFs)--in the same histological section. To reach this goal, cross-sections of muscle nerves were sequentially incubated with the standard protocols for CE and CA histochemistry. A modified incubation medium was used for CA in which Co++ is replaced by Ni++. This avoids interference of the two histochemical reactions because Co++ binds unspecifically to the brown copper-ferroferricyanide complex representing CE activity, whereas Ni++ does not. Cross-sections of the trapezius muscle nerve containing efferent and afferent NFs in segregated fascicles showed that CE activity was confined to motor NFs. Axonal CA was detected solely in sensory NFs. The number of labeled motor and sensory NFs determined in serial cross-sections stained with either the new or the conventional technique was not significantly different. Morphometric analysis revealed that small unreactive NFs (diameter less than 5 microns) are afferent, medium-sized ones (5 microns less than d less than 7 microns) are unclassifiable, and large ones (d greater than 7 microns) are efferent. The heterogenous CE activity of thick (alpha) motor NFs is linked to the type of their motor units. "Fast" motor units contain CE reactive NFs; "slow" ones have CE negative neurites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rowan P. Rimington ◽  
Jacob W. Fleming ◽  
Andrew J. Capel ◽  
Patrick C. Wheeler ◽  
Mark P. Lewis

AbstractInvestigations of the human neuromuscular junction (NMJ) have predominately utilised experimental animals, model organisms, or monolayer cell cultures that fail to represent the physiological complexity of the synapse. Consequently, there remains a paucity of data regarding the development of the human NMJ and a lack of systems that enable investigation of the motor unit. This work addresses this need, providing the methodologies to bioengineer 3D models of the human motor unit. Spheroid culture of iPSC derived motor neuron progenitors augmented the transcription of OLIG2, ISLET1 and SMI32 motor neuron mRNAs ~ 400, ~ 150 and ~ 200-fold respectively compared to monolayer equivalents. Axon projections of adhered spheroids exceeded 1000 μm in monolayer, with transcription of SMI32 and VACHT mRNAs further enhanced by addition to 3D extracellular matrices in a type I collagen concentration dependent manner. Bioengineered skeletal muscles produced functional tetanic and twitch profiles, demonstrated increased acetylcholine receptor (AChR) clustering and transcription of MUSK and LRP4 mRNAs, indicating enhanced organisation of the post-synaptic membrane. The number of motor neuron spheroids, or motor pool, required to functionally innervate 3D muscle tissues was then determined, generating functional human NMJs that evidence pre- and post-synaptic membrane and motor nerve axon co-localisation. Spontaneous firing was significantly elevated in 3D motor units, confirmed to be driven by the motor nerve via antagonistic inhibition of the AChR. Functional analysis outlined decreased time to peak twitch and half relaxation times, indicating enhanced physiology of excitation contraction coupling in innervated motor units. Our findings provide the methods to maximise the maturity of both iPSC motor neurons and primary human skeletal muscle, utilising cell type specific extracellular matrices and developmental timelines to bioengineer the human motor unit for the study of neuromuscular junction physiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chris Donnelly ◽  
Jonathan Stegmüller ◽  
Anthony J. Blazevich ◽  
Fabienne Crettaz von Roten ◽  
Bengt Kayser ◽  
...  

AbstractThe effectiveness of neuromuscular electrical stimulation (NMES) for rehabilitation is proportional to the evoked torque. The progressive increase in torque (extra torque) that may develop in response to low intensity wide-pulse high-frequency (WPHF) NMES holds great promise for rehabilitation as it overcomes the main limitation of NMES, namely discomfort. WPHF NMES extra torque is thought to result from reflexively recruited motor units at the spinal level. However, whether WPHF NMES evoked force can be modulated is unknown. Therefore, we examined the effect of two interventions known to change the state of spinal circuitry in opposite ways on evoked torque and motor unit recruitment by WPHF NMES. The interventions were high-frequency transcutaneous electrical nerve stimulation (TENS) and anodal transcutaneous spinal direct current stimulation (tsDCS). We show that TENS performed before a bout of WPHF NMES results in lower evoked torque (median change in torque time-integral: − 56%) indicating that WPHF NMES-evoked torque might be modulated. In contrast, the anodal tsDCS protocol used had no effect on any measured parameter. Our results demonstrate that WPHF NMES extra torque can be modulated and although the TENS intervention blunted extra torque production, the finding that central contribution to WPHF NMES-evoked torques can be modulated opens new avenues for designing interventions to enhance WPHF NMES.


1993 ◽  
Vol 69 (2) ◽  
pp. 442-448 ◽  
Author(s):  
J. Petit ◽  
M. Chua ◽  
C. C. Hunt

1. Isotonic shortening of cat superficial lumbrical muscles was studied during maximal tetanic contractions of single motor units of identified types. For each motor unit, the maximal speed of contraction, Vmax, was determined by extrapolating to zero the hyperbolic relation between applied tension and speed of shortening. 2. The maximal speeds of shortening of motor units formed a continuum with the highest velocities observed for the fast fatigable motor units and the lowest for the slow motor units. 3. On average, the maximum speed of shortening increased with the tetanic tension developed by the motor units. 4. In motor units with isometric twitch contraction times less than 35 ms, these times showed a significant inverse correlation with Vmax. Progressively longer contraction times were associated with rather small changes in Vmax. 5. The implications of these findings on the speed of muscle shortening during motor-unit recruitment are discussed.


1998 ◽  
Vol 23 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Jean Lambert ◽  
Kevin Scott

Training with voluntary or electromyostimulation (EMS)-evoked eccentric contractions should produce complete muscle activation, since EMS and eccentric contractions preferentially recruit large motor units. Subjects (22 women ages 18-40) were randomly assigned to a voluntary (VOL; n = 8), EMS (n = 8), or control group. VOL and EMS groups trained the quadriceps at the same, increasing force levels 4 times/week for 6 weeks using voluntary or EMS-evoked eccentric contractions. VOL improved voluntary more than EMS-evoked eccentric strength. EMS improved EMS-evoked strength more than voluntary. EMS training improved EMS-evoked eccentric strength more than VOL training improved voluntary eccentric strength. EMS-evoked to voluntary force ratio increased from 0.57 (±0.11) to 1.20 (±0.35) in EMS and did not change in VOL (all changes p < .05). Six of eight EMS subjects produced greater EMS-evoked force posttraining, suggesting incomplete muscle activation after EMS training. Key words: exercise, eccentric contraction, muscle activation


Sign in / Sign up

Export Citation Format

Share Document