Functional Expression of an Osmosensitive Cation Channel, Transient Receptor Potential Vanilloid 4, in Rat Vestibular Ganglia

2016 ◽  
Vol 21 (4) ◽  
pp. 268-274 ◽  
Author(s):  
Takefumi Kamakura ◽  
Makoto Kondo ◽  
Yoshihisa Koyama ◽  
Yukiko Hanada ◽  
Yusuke Ishida ◽  
...  

Transient receptor potential vanilloid (TRPV) 4 is a nonselective cation channel expressed in sensory neurons such as those in the dorsal root and trigeminal ganglia, kidney, and inner ear. TRPV4 is activated by mechanical stress, heat, low osmotic pressure, low pH, and phorbol derivatives such as 4α-phorbol 12,13-didecanoate (4α-PDD). We investigated the expression of TRPV4 in rat vestibular ganglion (VG) neurons. The TRPV4 gene was successfully amplified from VG neuron mRNA using reverse-transcription polymerase chain reaction. Furthermore, immunoblotting showed positive expression of TRPV4 protein in VG neurons. Immunohistochemistry indicated that TRPV4 was localized predominantly on the plasma membrane of VG neurons. Calcium (Ca2+) imaging of VG neurons showed that 4α-PDD and/or hypotonic stimuli caused an increase in intracellular Ca2+ concentration ([Ca2+]i) that was almost completely inhibited by ruthenium red, a selective antagonist of TRPV channels. Interestingly, a [Ca2+]i increase was evoked by both hypotonic stimuli and 4α-PDD in approximately 38% of VG neurons. These data indicate that TRPV4 is functionally expressed in VG neurons as an ion channel and that TRPV4 likely participates in VG neurons for vestibular neurotransmission as an osmoreceptor and/or mechanoreceptor.

2007 ◽  
Vol 292 (3) ◽  
pp. H1390-H1397 ◽  
Author(s):  
Sean P. Marrelli ◽  
Roger G. O'Neil ◽  
Rachel C. Brown ◽  
Robert M. Bryan

We previously demonstrated that endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in cerebral arteries are significantly reduced by inhibitors of PLA2. In this study we examined possible mechanisms by which PLA2 regulates endothelium-dependent dilation, specifically whether PLA2 is involved in endothelial Ca2+ regulation through stimulation of TRPV4 channels. Studies were carried out with middle cerebral arteries (MCA) or freshly isolated MCA endothelial cells (EC) of male Long-Evans rats. Nitro-l-arginine methyl ester (l-NAME) and indomethacin were present throughout. In pressurized MCA, luminally delivered UTP produced increased EC intracellular Ca2+ concentration ([Ca2+]i) and MCA dilation. Incubation with PACOCF3, a PLA2 inhibitor, significantly reduced both EC [Ca2+]i and dilation responses to UTP. EC [Ca2+]i was also partially reduced by a transient receptor potential vanilloid (TRPV) channel blocker, ruthenium red. Manganese quenching experiments demonstrated Ca2+ influx across the luminal and abluminal face of the endothelium in response to UTP. Interestingly, PLA2-sensitive Ca2+ influx occurred primarily across the abluminal face. Luminal application of arachidonic acid, the primary product of PLA2 and a demonstrated activator of certain TRPV channels, increased both EC [Ca2+]i and MCA diameter. TRPV4 mRNA and protein was demonstrated in the endothelium by RT-PCR and immunofluorescence, respectively. Finally, application of 4α-phorbol 12,13-didecanoate (4αPDD), a TRPV4 channel activator, produced an increase in EC [Ca2+]i that was significantly reduced in the presence of ruthenium red. We conclude that PLA2 is involved in EC Ca2+ regulation through its regulation of TRPV4 channels. Furthermore, the PLA2-sensitive component of Ca2+ influx may be polarized to the abluminal face of the endothelium.


2012 ◽  
Vol 302 (8) ◽  
pp. R1004-R1011 ◽  
Author(s):  
Soichi Watanabe ◽  
Andre P. Seale ◽  
E. Gordon Grau ◽  
Toyoji Kaneko

In teleost fish, prolactin (PRL) is an important hormone for hyperosmoregulation. The release of PRL from the pituitary of Mozambique tilapia is stimulated by a decrease in extracellular osmolality. Previous studies have shown that hyposmotically induced PRL release is linked with cell volume changes, and that stretch-activated Ca2+ channels are likely responsible for the initiation of the signal transduction for PRL release. In this study, we identified the stretch-activated Ca2+ channel transient receptor potential vanilloid 4 (TRPV4) from the rostral pars distalis (RPD) of tilapia acclimated to freshwater (FW). TRPV4 transcripts were ubiquitously expressed in tilapia; the level of expression in RPDs of FW-acclimated fish was lower than that found in RPDs of seawater (SW)-acclimated fish. Immunohistochemical analysis of the pituitary revealed that TRPV4 is localized in the cell membrane of PRL cells of both FW and SW tilapia. A functional assay with CHO-K1 cells showed that tilapia TRPV4 responded to a decrease in extracellular osmolality, and that its function was suppressed by ruthenium red (RR) and activated by 4α-phorbol 12,13-didecanoate (4aPDD). Exposure of dissociated PRL cells from FW-acclimated tilapia to RR blocked hyposmolality induced PRL release. PRL release, on the other hand, was stimulated by 4aPDD. These results indicate that PRL release in response to physiologically relevant changes in extracellular osmolality is mediated by the osmotically sensitive TRPV4 cation channel.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


2006 ◽  
Vol 291 (3) ◽  
pp. R541-R550 ◽  
Author(s):  
Dan Ni ◽  
Qihai Gu ◽  
Hong-Zhen Hu ◽  
Na Gao ◽  
Michael X. Zhu ◽  
...  

A recent study has demonstrated that increasing the intrathoracic temperature from 36°C to 41°C induced a distinct stimulatory and sensitizing effect on vagal pulmonary C-fiber afferents in anesthetized rats ( J Physiol 565: 295–308, 2005). We postulated that these responses are mediated through a direct activation of the temperature-sensitive transient receptor potential vanilloid (TRPV) receptors by hyperthermia. To test this hypothesis, we studied the effect of increasing temperature on pulmonary sensory neurons that were isolated from adult rat nodose/jugular ganglion and identified by retrograde labeling, using the whole cell perforated patch-clamping technique. Our results showed that increasing temperature from 23°C (or 35°C) to 41°C in a ramp pattern evoked an inward current, which began to emerge after exceeding a threshold of ∼34.4°C and then increased sharply in amplitude as the temperature was further increased, reaching a peak current of 173 ± 27 pA ( n = 75) at 41°C. The temperature coefficient, Q10, was 29.5 ± 6.4 over the range of 35–41°C. The peak inward current was only partially blocked by pretreatment with capsazepine (Δ I = 48.1 ± 4.7%, n = 11) or AMG 9810 (Δ I = 59.2 ± 7.8%, n = 8), selective antagonists of the TRPV1 channel, but almost completely abolished (Δ I = 96.3 ± 2.3%) by ruthenium red, an effective blocker of TRPV1–4 channels. Furthermore, positive expressions of TRPV1–4 transcripts and proteins in these neurons were demonstrated by RT-PCR and immunohistochemistry experiments, respectively. On the basis of these results, we conclude that increasing temperature within the normal physiological range can exert a direct stimulatory effect on pulmonary sensory neurons, and this effect is mediated through the activation of TRPV1, as well as other subtypes of TRPV channels.


Brain ◽  
2010 ◽  
Vol 133 (6) ◽  
pp. 1798-1809 ◽  
Author(s):  
Magdalena Zimoń ◽  
Jonathan Baets ◽  
Michaela Auer-Grumbach ◽  
José Berciano ◽  
Antonio Garcia ◽  
...  

2021 ◽  
Author(s):  
Yang Zhang ◽  
Pengfei Liang ◽  
Ke Zoe Shan ◽  
Liping Feng ◽  
Yong Chen ◽  
...  

TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization. How TMEM16F is activated during cell fusion is unclear. Here, we used trophoblasts as a model for cell fusion and demonstrated that Ca2+ influx through Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. Patch-clamp electrophysiology demonstrated that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in human trophoblasts. Pharmacological inhibition or gene silencing of TRPV4 hindered TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and a physiological activation mechanism of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically- and disease-relevant cell fusion events.


2019 ◽  
Vol 116 (18) ◽  
pp. 8869-8878 ◽  
Author(s):  
Shangyu Dang ◽  
Mark K. van Goor ◽  
Daniel Asarnow ◽  
YongQiang Wang ◽  
David Julius ◽  
...  

TRPV5 (transient receptor potential vanilloid 5) is a unique calcium-selective TRP channel essential for calcium homeostasis. Unlike other TRPV channels, TRPV5 and its close homolog, TRPV6, do not exhibit thermosensitivity or ligand-dependent activation but are constitutively open at physiological membrane potentials and modulated by calmodulin (CaM) in a calcium-dependent manner. Here we report high-resolution electron cryomicroscopy structures of truncated and full-length TRPV5 in lipid nanodiscs, as well as of a TRPV5 W583A mutant and TRPV5 in complex with CaM. These structures highlight the mechanism of calcium regulation and reveal a flexible stoichiometry of CaM binding to TRPV5.


Sign in / Sign up

Export Citation Format

Share Document