Gene Expression, Ontogeny and Transplacental Induction of Hepatic UDP-Glucuronosyl Transferase Activity in Mice

1991 ◽  
Vol 16 (3) ◽  
pp. 139-149 ◽  
Author(s):  
Dharam P. Chauhan ◽  
Mark Steven Miller ◽  
Ida S. Owens ◽  
Lucy M. Anderson
2019 ◽  
Vol 20 (11) ◽  
pp. 918-923 ◽  
Author(s):  
Yazun Jarrar ◽  
Qais Jarrar ◽  
Mohammad Abu-Shalhoob ◽  
Abdulqader abed ◽  
Esra'a Sha'ban

Background: Mouse Udp-glucuronosyl Transferase (UGT) 2b1 is equivalent to the human UGT2B7 enzyme, which is a phase II drug-metabolising enzyme and plays a major role in the metabolism of xenobiotic and endogenous compounds. This study aimed to find the relative expression of the mouse ugt2b1 gene in the liver, kidney, and heart organs and the influence of Nonsteroidal Anti-inflammatory Drug (NSAID) administration. Methods: Thirty-five Blab/c mice were divided into 5 groups and treated with different commonly-used NSAIDs; diclofenac, ibuprofen, meloxicam, and mefenamic acid for 14 days. The livers, kidneys, and hearts were isolated, while the expression of ugt2b1 gene was analysed with a quantitative real-time polymerase chain reaction technique. Results: It was found that the ugt2b1 gene is highly expressed in the liver, and then in the heart and the kidneys. NSAIDs significantly upregulated (ANOVA, p < 0.05) the expression of ugt2b1 in the heart, while they downregulated its expression (ANOVA, p < 0.05) in the liver and kidneys. The level of NSAIDs’ effect on ugt2b1 gene expression was strongly correlated (Spearman’s Rho correlation, p < 0.05) with NSAID’s lipophilicity in the liver and its elimination half-life in the heart. Conclusion: This study concluded that the mouse ugt2b1 gene was mainly expressed in the liver, as 14-day administration of different NSAIDs caused alterations in the expression of this gene, which may influence the metabolism of xenobiotic and endogenous compounds.


2009 ◽  
Vol 102 (4) ◽  
pp. 1591-1598 ◽  
Author(s):  
Zhongzheng Gui ◽  
Chengxiang Hou ◽  
Ting Liu ◽  
Guangxin Qin ◽  
Muwang Li ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2054-2054
Author(s):  
Mireia Camos ◽  
Jordi Esteve ◽  
Pedro Jares ◽  
Maria Rozman ◽  
Dolors Colomer ◽  
...  

Abstract Translocation t(8;16)(p11;p13) is an infrequent chromosomal abnormality in de novo and secondary AML cases, leading to the fusion of MYST3 (MOZ) and CREBBP (CBP) genes, both of them harboring histone lysine acetyl-transferase activity. This AML variety displays specific clinical and biological features, although its gene expression profile is currently unknown. In this study, the genetic signature of AML cases with MYST3/CREBBP rearrangement was compared with the genetic profile of other well-defined AML subtypes. Genotypic analyses using oligonucleotide U133A arrays (Affymetrix) were performed on RNA of 19 AML samples, including t(8;16)-AML (n=3), t(15;17) (n=3), t(8;21) (n=2), inv(16)/t(16;16) (n=3), t(9;11) with AF9/MLL rearrangement (n=2), 3 cases with normal karyotype and flt-3 internal tandem duplication (flt-3 ITD), the three remaining samples corresponding to monocytic cases (M4/M5) without MLL rearrangement nor flt-3 ITD. After unsupervised analysis, cases of AML with t(8;16) clustered together, displaying a differential expression profile. Supervised analysis allowed the identification of the top 53 up-regulated and 28 down-regulated genes. Among the set of genes overexpressed, genes involved in chromatin remodelling and transcription (HOXA9, HOXA10, MEIS1, CHD3, SATB1) and protooncogenes (RET, flt-3, LMO2) were identified. In contrast, CREBBP gene and several members of the JAK-STAT pathway (STAT3, STAT5B, JAK2) were underexpressed. Interestingly, overexpression of multiple homeobox genes was detected in flt-3 ITD cases, some of them as a distinctive finding (HOXA2, HOXA3, HOXB6), and others (HOXA9, HOXA10, MEIS1) were found to be highly expressed in MYST3/CREBBP and MLL-rearranged samples. In conclusion, AML with t(8;16) and MYST3/CREBBP rearrangement shows a distinctive gene expression profile, with some similarities with MLL rearranged leukemias and flt-3 ITD AML cases, thus suggesting a partially common leukemogenic pathway.


Archaea ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Jennifer Gebetsberger ◽  
Marek Zywicki ◽  
Andrea Künzi ◽  
Norbert Polacek

Nonprotein coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. These RNAs either originate from their individual transcription units or are processing products from longer precursor RNAs. For example, tRNA-derived fragments (tRFs) have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNA candidates. Here we present evidence that tRFs from the halophilic archaeonHaloferax volcaniidirectly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome, a 26-residue-long fragment originating from the 5′ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunitin vitroandin vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression inH. volcaniiunder environmental stress conditions probably by fine tuning the rate of protein production.


2002 ◽  
Vol 368 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Seema SEHRAWAT ◽  
Narayanaswamy SRINIVASAN ◽  
Karumathil P. GOPINATHAN

Late gene expression factor 4 (LEF4), a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus has been bacterially expressed and characterized. Sequence analyses and three-dimensional modelling of B. mori LEF4 showed that the protein is related to mRNA-capping enzymes, which are organized as two modular domains. Most of the acidic side chains in LEF4 were solvent-exposed and spread all along the fold. A region dominated by negatively charged groups, which protrudes from the larger domain was ideally suited for interactions with proteins having positively charged patches at the surface. The purified LEF4 protein exhibited different enzyme activities associated with mRNA-capping enzymes, i.e. GTP-binding, RNA triphosphatase and guanylate transferase activities. In addition, LEF4 also showed NTP-hydrolysing activity. The kinetic analysis of ATP hydrolysis revealed a sigmoidal response with two deduced binding sites for ATP, whereas the guanylate transferase activity showed a typical hyperbolic response to varying concentrations of GTP with a Km of 330±20μM. Analysis of the modelled three-dimensional structure of LEF4 suggested the presence of crucial residues in sequence motifs important for the integrity of the fold. Mutation of one such conserved and buried tyrosine residue to cysteine in the motif IIIa, located close to the interlobe region of the model, resulted in a 44% loss of guanylate transferase activity of LEF4 but had no effect on the ATPase activity.


Sign in / Sign up

Export Citation Format

Share Document