endogenous compounds
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fred Chasalow

My laboratory discovered a new type of steroids. The structure of these steroids is unique in three ways: (i) they have 23, 24 or 25 carbon atoms – no other known vertebrate steroid has more than 21 carbon atoms; (ii) they are phosphodiesters – no other steroid phosphodiesters are known; and (iii) some of them have a spiral steroid at carbon 17 – no other endogenous spiral steroids are known. In total, our laboratory had elucidated the structure and path of biosynthesis for more than 20 related compounds. We have developed an LC–MS method and a MS–MS method to measure the compounds in small samples (< 1 ml). Synthetic compounds with similar spiral steroids (e.g., spironolactone) function as potassium sparing hormones but there were no known endogenous hormones with this function. We propose that the natural spiral steroids have that function. Endogenous compounds with these functions would have important roles in the physiology of pregnancy, pre-eclampsia, and eclampsia. This chapter will review the proposed physiology and pathology of the spiral steroids during pregnancy. There are many details to confirm but this is a useful paradigm.


Author(s):  
Yue Sui ◽  
Jianming Wu ◽  
Jianping Chen

Over the past decade, the gut microbiota has received considerable attention for its interactions with the host. Microbial β-glucuronidase generated by this community has hence aroused concern for its biotransformation activity to a wide range of exogenous (foreign) and endogenous compounds. Lately, the role of gut microbial β-glucuronidase in the pathogenesis of breast cancer has been proposed for its estrogen reactivation activity. This is plausible considering that estrogen glucuronides are the primary products of estrogens’ hepatic phase II metabolism and are subject to β-glucuronidase-catalyzed hydrolysis in the gut via bile excretion. However, research in this field is still at its very preliminary stage. This review outlines the biology of microbial β-glucuronidase in the gastrointestinal tract and elaborates on the clues to the existence of microbial β-glucuronidase–estrogen metabolism–breast cancer axis. The research gaps in this field will be discussed and possible strategies to address these challenges are suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bastian Haberkorn ◽  
Martin F. Fromm ◽  
Jörg König

Organic Cation Transporter 1 (OCT1, gene symbol: SLC22A1) is predominately expressed in human liver, localized in the basolateral membrane of hepatocytes and facilitates the uptake of endogenous compounds (e.g. serotonin, acetylcholine, thiamine), and widely prescribed drugs (e.g. metformin, fenoterol, morphine). Furthermore, exogenous compounds such as MPP+, ASP+ and Tetraethylammonium can be used as prototypic substrates to study the OCT1-mediated transport in vitro. Single-transfected cell lines recombinantly overexpressing OCT1 (e.g., HEK-OCT1) were established to study OCT1-mediated uptake and to evaluate transporter-mediated drug-drug interactions in vitro. Furthermore, double-transfected cell models simultaneously overexpressing basolaterally localized OCT1 together with an apically localized export protein have been established. Most of these cell models are based on polarized grown MDCK cells and can be used to analyze transcellular transport, mimicking the transport processes e.g. during the hepatobiliary elimination of drugs. Multidrug and toxin extrusion protein 1 (MATE1, gene symbol: SLC47A1) and the ATP-driven efflux pump P-glycoprotein (P-gp, gene symbol: ABCB1) are both expressed in the canalicular membrane of human hepatocytes and are described as transporters of organic cations. OCT1 and MATE1 have an overlapping substrate spectrum, indicating an important interplay of both transport proteins during the hepatobiliary elimination of drugs. Due to the important role of OCT1 for the transport of endogenous compounds and drugs, in vitro cell systems are important for the determination of the substrate spectrum of OCT1, the understanding of the molecular mechanisms of polarized transport, and the investigation of potential drug-drug interactions. Therefore, the aim of this review article is to summarize the current knowledge on cell systems recombinantly overexpressing human OCT1.


2021 ◽  
Vol 14 (5) ◽  
pp. 393
Author(s):  
Giovanni Caprioli ◽  
Michele Genangeli ◽  
Ahmed M. Mustafa ◽  
Riccardo Petrelli ◽  
Massimo Ricciutelli ◽  
...  

A simple and fast analytical method able to simultaneously identify and quantify 17 endogenous and exogenous steroidal hormones was developed in bovine and equine blood using UHPLC-MS/MS. A total amount of 500 µL of sample was deproteinized with 500 µL of a mixture of methanol and zinc sulfate and evaporated. The mixture was reconstituted with 50 µL of a solution of 25% methanol and injected in the UHPLC-MS/MS triple quadrupole. The correlation coefficients of the calibration curves of the analyzed compounds were in the range of 0.9932–0.9999, and the limits of detection and quantification were in the range of 0.023–1.833 and 0.069–5.5 ppb, respectively. The developed method showed a high sensitivity and qualitative aspects allowing the detection and quantification of all steroids in equine and bovine blood. Moreover, the detection limit of testosterone (50 ppt) is half of the threshold admitted in plasma (100 ppt). Once validated, the method was used to quantify 17 steroid hormones in both bovine and equine blood samples. The primary endogenous compounds detected were corticosterone (range 0.28–0.60 ppb) and cortisol (range 0.44–10.00 ppb), followed by androstenedione, testosterone and 11-deoxycortisol.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247020
Author(s):  
Xiaoling Liu ◽  
Yichen Jia ◽  
Changyuan Shi ◽  
Dechen Kong ◽  
Yuanming Wu ◽  
...  

CYP4B1 belongs to the mammalian CYP4 enzyme family and is predominantly expressed in the lungs of humans. It is responsible for the oxidative metabolism of a wide range of endogenous compounds and xenobiotics. In this study, using data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database, a secondary analysis was performed to explore the expression profile of CYP4B1, as well as its prognostic value in patients with lung adenocarcinoma (LUAD). Based on the obtained results, a significantly decreased CYP4B1 expression was discovered in patients with LUAD when compared with their normal counterparts (p<0.05), and was linked to age younger than 65 years (p = 0.0041), history of pharmaceutical (p = 0.0127) and radiation (p = 0.0340) therapy, mutations in KRAS/EGFR/ALK (p = 0.0239), and living status of dead (p = 0.0026). Survival analysis indicated that the low CYP4B1 expression was an independent prognostic indicator of shorter survival in terms of overall survival (OS) and recurrence-free survival (RFS) in patients with LUAD. The copy number alterations (CNAs) and sites of cg23440155 and cg23414387 hypermethylation might contribute to the decreased CYP4B1 expression. Gene set enrichment analysis (GSEA) suggested that CYP4B1 might act as an oncogene in LUAD by preventing biological metabolism pathways of exogenous and endogenous compounds and enhancing DNA replication and cell cycle activities. In conclusion, CYP4B1 expression may serve as a valuable independent prognostic biomarker and a potential therapeutic target in patients with LUAD.


The Analyst ◽  
2021 ◽  
Author(s):  
Sierra Jackson ◽  
Abraham K. Badu-Tawiah

Determination of pesticide residues in a wide variety of matrices is an ongoing challenge due to low concentration and substantial amounts of interfering endogenous compounds that can be coextracted with...


2020 ◽  
Vol 6 (3) ◽  
pp. 21-26
Author(s):  
Alexander L. Khokhlov ◽  
Dmitry P. Romodanovsky

Introduction: The general requirements for assessing bioequivalence of endogenous drugs are described in the relevant guidelines, but they do not provide a complete picture of how to adequately develop a design of such a study. The aim of this article is to offer recommendations on the development of a design for bioequivalence studies of endogenous drugs, using cholecalciferol as an example. Materials and methods: A systematic review of our database on the results of bioequivalence studies of generic drugs revealed one study of cholecalciferol drugs, which was performed using a simple cross-over design. The study involved 24 healthy adult subjects. The data of 24 volunteers were retrospectively analyzed to identify endogenous cholecalciferol concentrations and intraindividual variability (CVintra) for Cmax and AUC0-t. As part of a retrospective analysis, we also assessed gender differences of pharmacokinetics. Results and discussion: Assessment of the bioequivalence of cholecalciferol drugs was complicated by the presence of endogenous concentrations of cholecalciferol for the tested drug – 1.27 (±0.55) ng/ml and for the reference drug – 0.98 (±0.55) ng/ml. The results of the analysis of the intraindividual variability of Cmax and AUC0-72 of the tested and reference drugs showed the following CVintra values – 22.80% and 21.58%, respectively. A comparative analysis of pharmacokinetic parameters did not reveal statistically significant gender differences. The article presents approaches to the planning of future bioequivalence studies of cholecalciferol drugs. Conclusion: Cholecalciferol is not a highly variable drug; however, it relates to drugs – analogues of endogenous compounds, which requires determining the endogenous concentrations.


2020 ◽  
Vol 21 (16) ◽  
pp. 5737 ◽  
Author(s):  
Marek Droździk ◽  
Stefan Oswald ◽  
Agnieszka Droździk

Emerging information suggests that liver pathological states may affect the expression and function of membrane transporters in the gastrointestinal tract and the kidney. Altered status of the transporters could affect drug as well as endogenous compounds handling with subsequent clinical consequences. It seems that changes in intestinal and kidney transporter functions provide the compensatory activity of eliminating endogenous compounds (e.g., bile acids) generated and accumulated due to liver dysfunction. A literature search was conducted on the Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and kidney operating ABC (ATP-binding cassette) transporters and SLC (solute carriers) carriers. The accumulated data suggest that liver failure-associated transporter alterations in the gastrointestinal tract and kidney may affect drug pharmacokinetics. The altered status of drug transporters in those organs in liver dysfunction conditions may provide compensatory activity in handling endogenous compounds, affecting local drug actions as well as drug pharmacokinetics.


2020 ◽  
Vol 72 (5) ◽  
pp. 1173-1194 ◽  
Author(s):  
Marek Drozdzik ◽  
Izabela Czekawy ◽  
Stefan Oswald ◽  
Agnieszka Drozdzik

Abstract Emerging information suggests that gastrointestinal and systemic pathology states may affect expression and function of membrane transporters in the gastrointestinal tract. Altered status of the transporters could affect drug as well as endogenous compounds handling with subsequent clinical consequences. It seems that in some pathologies, e.g., liver or kidney failure, changes in the intestinal transporter function provide compensatory functions, eliminating substrates excreted by dysfunctional organs. A literature search was conducted on Ovid and Pubmed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of intestinal drug transporters. The accumulated data suggest that gastrointestinal pathology (inflammatory bowel disease, celiac disease, cholestasis) as well as systemic pathologies (kidney failure, liver failure, hyperthyroidism, hyperparathyroidism, obesity, diabetes mellitus, systemic inflammation and Alzheimer disease) may affect drug transporter expression and function in the gastrointestinal tract. The altered status of drug transporters may provide compensatory activity in handling endogenous compounds, affect local drug actions in the gastrointestinal tract as well as impact drug bioavailability. Graphic abstract


2020 ◽  
Vol 12 (8) ◽  
pp. 1171-1182
Author(s):  
Lana Brockbals ◽  
Sandra N. Staeheli ◽  
Thomas Kraemer ◽  
Andrea E. Steuer

Sign in / Sign up

Export Citation Format

Share Document