scholarly journals MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor

2018 ◽  
Vol 46 (4) ◽  
pp. 1566-1580 ◽  
Author(s):  
Zhibo Chen ◽  
Mian Wang ◽  
Kai Huang ◽  
Qiong He ◽  
Honghao Li ◽  
...  

Background/Aims: Increasing evidence links microRNAs to the pathogenesis of peripheral vascular disease. We recently found microRNA-125b (miR-125b) to be one of the most significantly down‑regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO) of the lower extremities. However, its function in the process of ASO remains unclear. This study aimed to investigate the expression, regulatory mechanisms, and functions of miR-125b in the process of ASO. Methods: Using the tissue explants adherent method, vascular smooth muscle cells (VSMCs) were prepared for this study. A rat carotid artery balloon injury model was constructed to simulate the development of vascular neointima, and a lentiviral transduction system was used to overexpress serum response factor (SRF) or miR-125b. Quantitative real‑time PCR (qRT‑PCR) was used to detect the expression levels of miR‑125b and SRF mRNA. Western blotting was performed to determine the expression levels of SRF and Ki67. In situ hybridization analysis was used to analyze the location and expression levels of miR-125b. CCK-8 and EdU assays were used to assess cell proliferation, and transwell and wound closure assays were performed to measure cell migration. Flow cytometry was used to evaluate cell apoptosis, and a dual-luciferase reporter assay was conducted to examine the effects of miR‑125b on SRF. Immunohistochemistry and immunofluorescence analyses were performed to analyze the location and expression levels of SRF and Ki67. Results: miR-125b expression was decreased in ASO arteries and platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. miR-125b suppressed VSMC proliferation and migration but promoted VSMC apoptosis. SRF was determined to be a direct target of miR-125b. Exogenous miR-125b expression modulated SRF expression and inhibited vascular neointimal formation in balloon-injured rat carotid arteries. Conclusions: These findings demonstrate a specific role of the miR-125b/SRF pathway in regulating VSMC function and suggest that modulating miR-125b levels might be a novel approach for treating ASO.

2000 ◽  
Vol 345 (3) ◽  
pp. 445-451 ◽  
Author(s):  
Paul R. KEMP ◽  
James C. METCALFE

Serum response factor (SRF) is a key transcriptional activator of the c-fos gene and of muscle-specific gene expression. We have identified four forms of the SRF coding sequence, SRF-L (the previously identified form), SRF-M, SRF-S and SRF-I, that are produced by alternative splicing. The new forms of SRF lack regions of the C-terminal transactivation domain by splicing out of exon 5 (SRF-M), exons 4 and 5 (SRF-S) and exons 3, 4 and 5 (SRF-I). SRF-M is expressed at similar levels to SRF-L in differentiated vascular smooth-muscle cells and skeletal-muscle cells, whereas SRF-L is the predominant form in many other tissues. SRF-S expression is restricted to vascular smooth muscle and SRF-I expression is restricted to the embryo. Transfection of SRF-L and SRF-M into C2C12 cells showed that both forms are transactivators of the promoter of the smooth-muscle-specific gene SM22α, whereas SRF-I acted as a dominant negative form of SRF.


1997 ◽  
Vol 272 (4) ◽  
pp. C1394-C1404 ◽  
Author(s):  
B. P. Herring ◽  
A. F. Smith

Telokin transcription is initiated from a smooth muscle-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene. We have previously identified a 310-base pair fragment of the promoter that mediates A10 smooth muscle cell-specific expression of telokin. In the current study, telokin-luciferase reporter gene assays in A10 cells and REF52 nonmuscle cells revealed that the promoter region between -81 and +80 contains the regulatory elements required to mediate the in vitro cell specificity of the promoter. Several positive-acting elements, including an E box, myocyte enhancer factor 2 (MEF2)-TATA box, and CArG-serum response element, were identified within this region. Telokin transcription in A10 smooth muscle cells requires all three transcription initiation sites and an AT-rich sequence between -71 and -62 that includes a TATA box. MEF2 interacts with the AT-rich region with low affinity; however, MEF2 binding is not required for transcriptional activity in A10 cells. Binding of serum response factor (SRF) to a CArG element proximal to the TATA sequence is also critical for high levels of transcription in A10 cells. Together these data suggest that an AT-rich motif, acting in concert with SRF and an unusual transcription initiation mechanism, is required for the cell-specific expression of the telokin promoter in A10 smooth muscle cells.


2010 ◽  
Vol 89 (2-3) ◽  
pp. 216-224 ◽  
Author(s):  
Daniela Werth ◽  
Gabriele Grassi ◽  
Nina Konjer ◽  
Barbara Dapas ◽  
Rossella Farra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document