Gamma Knife Radiosurgery for Trigeminal Neuralgia Caused by a Cavernous Malformation: Case Report and Literature Review

2018 ◽  
Vol 96 (6) ◽  
pp. 412-415
Author(s):  
Matthew Pease ◽  
Joseph Withrow ◽  
Alp Ozpinar ◽  
L. Dade Lunsford
2019 ◽  
Vol 97 (3) ◽  
pp. 202-206
Author(s):  
Shayan Moosa ◽  
Tony R. Wang ◽  
Panagiotis Mastorakos ◽  
Jason P. Sheehan ◽  
W. Jeffrey Elias

2020 ◽  
Vol 133 (3) ◽  
pp. 727-735
Author(s):  
Peter Shih-Ping Hung ◽  
Sarasa Tohyama ◽  
Jia Y. Zhang ◽  
Mojgan Hodaie

OBJECTIVEGamma Knife radiosurgery (GKRS) is a noninvasive surgical treatment option for patients with medically refractive classic trigeminal neuralgia (TN). The long-term microstructural consequences of radiosurgery and their association with pain relief remain unclear. To better understand this topic, the authors used diffusion tensor imaging (DTI) to characterize the effects of GKRS on trigeminal nerve microstructure over multiple posttreatment time points.METHODSNinety-two sets of 3-T anatomical and diffusion-weighted MR images from 55 patients with TN treated by GKRS were divided within 6-, 12-, and 24-month posttreatment time points into responder and nonresponder subgroups (≥ 75% and < 75% reduction in posttreatment pain intensity, respectively). Within each subgroup, posttreatment pain intensity was then assessed against pretreatment levels and followed by DTI metric analyses, contrasting treated and contralateral control nerves to identify specific biomarkers of successful pain relief.RESULTSGKRS resulted in successful pain relief that was accompanied by asynchronous reductions in fractional anisotropy (FA), which maximized 24 months after treatment. While GKRS responders demonstrated significantly reduced FA within the radiosurgery target 12 and 24 months posttreatment (p < 0.05 and p < 0.01, respectively), nonresponders had statistically indistinguishable DTI metrics between nerve types at each time point.CONCLUSIONSUltimately, this study serves as the first step toward an improved understanding of the long-term microstructural effect of radiosurgery on TN. Given that FA reductions remained specific to responders and were absent in nonresponders up to 24 months posttreatment, FA changes have the potential of serving as temporally consistent biomarkers of optimal pain relief following radiosurgical treatment for classic TN.


2002 ◽  
Vol 97 ◽  
pp. 533-535 ◽  
Author(s):  
Jin Woo Chang ◽  
Jae Young Choi ◽  
Young Sul Yoon ◽  
Yong Gou Park ◽  
Sang Sup Chung

✓ The purpose of this paper was to present two cases of secondary trigeminal neuralgia (TN) with an unusual origin and lesion location. In two cases TN was caused by lesions along the course of the trigeminal nerve within the pons and adjacent to the fourth ventricle. Both cases presented with typical TN. Brain magnetic resonance imaging revealed linear or wedge-shaped lesions adjacent to the fourth ventricle, extending anterolaterally and lying along the pathway of the intraaxial trigeminal fibers. The involvement of the nucleus of the spinal trigeminal tract and of the principal sensory trigeminal nucleus with segmental demyelination are suggested as possible causes for trigeminal pain in these cases. It is postulated that these lesions are the result of an old viral neuritis. The patients underwent gamma knife radiosurgery and their clinical responses have been encouraging to date.


Sign in / Sign up

Export Citation Format

Share Document