scholarly journals Identification of Hub Genes Associated with the Development of Acute Kidney Injury by Weighted Gene Co-Expression Network Analysis

2021 ◽  
pp. 1-11
Author(s):  
Xiao Lin ◽  
Jianchun Li ◽  
Ruizhi Tan ◽  
Xia Zhong ◽  
Jieke Yang ◽  
...  

<b><i>Background:</i></b> Acute kidney injury (AKI) is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying molecular targets related to the progression of AKI. <b><i>Methods:</i></b> A public database originated from the NCBI GEO database (serial number: GSE121190) and a well-established and unbiased method of weighted gene co-expression network analysis (WGCNA) to identify hub genes and potential pathways were used. Furthermore, the unbiased hub genes were validated in 2 classic models of AKI in a rodent model: chemically established AKI by cisplatin- and ischemia reperfusion-induced AKI. <b><i>Results:</i></b> A total of 17 modules were finally obtained by the unbiased method of WGCNA, where the genes in turquoise module displayed strong correlation with the development of AKI. In addition, the results of gene ontology revealed that the genes in turquoise module were involved in renal injury and renal fibrosis. Thus, the hub genes were further validated by experimental methods and primarily obtained Rplp1 and Lgals1 as key candidate genes related to the progression of AKI by the advantage of quantitative PCR, Western blotting, and in situ tissue fluorescence. Importantly, the expression of Rplp1 and Lgals1 at the protein level showed positive correlation with renal function, including serum Cr and BUN. <b><i>Conclusions:</i></b> By the advantage of unbiased bioinformatic method and consequent experimental verification, this study lays the foundation basis for the pathogenesis and therapeutic agent development of AKI.

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii514-iii514
Author(s):  
Víctor Blanco-Gozalo ◽  
Laura Prieto-García ◽  
Sandra Sancho-Martínez ◽  
Yaremi Quiros-Luis ◽  
José López-Novoa ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10926
Author(s):  
Weiming Deng ◽  
Xiangling Wei ◽  
Zhanwen Dong ◽  
Jinhua Zhang ◽  
Zhengyu Huang ◽  
...  

BackgroundIschemia-reperfusion injury and drug-induced nephrotoxicity are the two most common reasons for acute kidney injury (AKI). However, little attention has been paid to early activation of fibroblasts in the progression of AKI to chronic kidney disease (CKD). The present study aimed to identify related genes and pathways on fibroblast activation in two mouse models of AKI: ischemia-reperfusion injury (IRI) model and folic acid (FA)-induced injury model.MethodsThe microarray expression profiles ofGSE62732andGSE121190were downloaded from the GEO database, and the differentially expressed genes (DEGs) was analyzed using the Limma package of R software. Principal component analysis (PCA) was also performed using R. The functional information of gene products was annotated by Gene Ontology (GO) and DAVID online database, and the pathway analysis was carried out by using the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Protein-protein interactions (PPI) network was constructed by STRING and Cytoscape. Furthermore, in the Hypoxia/Reoxygenation (H/R) model, the morphological changes of cells were observed under microscope and the expression of the hub genes in NRK-49F cells were validated by qRT-PCR assays.ResultsA total of 457 DEGs were identified. Among these, 215 DEGs were upregulated and 242 DEGs were downregulated in the acute injured samples compared with uninjured samples. The GO enrichment analysis indicated that these DEGs were mainly involved in transport, the oxidation-reduction process, the metabolic process, metal ion binding, hydrolase activity, and oxidoreductase activity. The KEGG analysis revealed that these DEGs were significantly enriched in the PI3K-Akt signaling pathway, protein digestion and absorption pathway, and focal adhesion pathway. The hub genes including Hnf4α, Pck1 and Timp1 were validated by the qRT-PCR assay in NRK-49F cells in the H/R model.ConclusionsHnf4α, Pck1 and Timp-1 may play a pivotal role in the early activation of fibroblasts, providing novel therapeutic strategies for early prediction and treatment of renal fibrosis.


2019 ◽  
Vol 139 (3) ◽  
pp. 137-142 ◽  
Author(s):  
Takaomi Shimokawa ◽  
Hidenobu Tsutsui ◽  
Takeshi Miura ◽  
Masashi Takama ◽  
Kohei Hayashi ◽  
...  

2021 ◽  
Vol 10 (6) ◽  
pp. 1175
Author(s):  
Emaad M. Abdel-Rahman ◽  
Faruk Turgut ◽  
Jitendra K. Gautam ◽  
Samir C. Gautam

Acute kidney injury (AKI) is a common clinical syndrome characterized by rapid impairment of kidney function. The incidence of AKI and its severe form AKI requiring dialysis (AKI-D) has been increasing over the years. AKI etiology may be multifactorial and is substantially associated with increased morbidity and mortality. The outcome of AKI-D can vary from partial or complete recovery to transitioning to chronic kidney disease, end stage kidney disease, or even death. Predicting outcomes of patients with AKI is crucial as it may allow clinicians to guide policy regarding adequate management of this problem and offer the best long-term options to their patients in advance. In this manuscript, we will review the current evidence regarding the determinants of AKI outcomes, focusing on AKI-D.


2021 ◽  
Vol 13 (593) ◽  
pp. eabd0214
Author(s):  
Zhilin Luan ◽  
Wenhua Ming ◽  
Cong Zhang ◽  
Xiaoxiao Huo ◽  
Feng Zheng ◽  
...  

The nuclear pregnane X receptor may not protect against ischemia/reperfusion-induced acute kidney injury in mice.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Long Zhao ◽  
Yan Xu

Abstract Background and Aims Studies have shown that serum response factor (SRF) is increased in chronic kidney injury, such as diabetic nephropathy, hyperuricemic nephropathy and renal cell carcinoma. The objective is to explore the early diagnostic value of SRF in acute kidney injury (AKI). Method AKI-related microarray data were analyzed, and the expression and location of SRF were investigated in the early phase of AKI. Results Bioinformatics results demonstrated that SRF was dramatically elevated 2-4 h after ischemia/reperfusion (I/R) in mouse renal tissue. In I/R rats, SRF was mostly expressed and located in renal tubular epithelial cells (TECs). SRF started to increase at 1 h, peaked at 3-9 h and started to decrease at 12 h after I/R. The areas under the ROC curve of renal SRF mRNA, renal SRF protein, urinary SRF, serum SRF and serum creatinine (Scr) were 87.9%, 83.0%, 81.3%, 78.8%, 68.8%, respectively. Conclusion SRF is remarkably upregulated in early (before 24 h) AKI and can replace Scr as a potential new early diagnostic biomarker of AKI.


2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


Sign in / Sign up

Export Citation Format

Share Document