scholarly journals Switchable bandstop to allpass filter using cascaded transmission line SIW resonators in K-band

2021 ◽  
Vol 10 (5) ◽  
pp. 2617-2626
Author(s):  
Amirul Aizat Zolkefli ◽  
Noor Azwan Shairi ◽  
Badrul Hisham Ahmad ◽  
Adib Othman ◽  
Nurulhalim Hassim ◽  
...  

In this paper, a switchable bandstop to allpass filter using cascaded transmission line SIW resonators is proposed. The switchable filter is performed by the switchable cascaded transmission line SIW resonators using discrete PIN diodes. Therefore, it can be used for rejecting any unwanted frequencies in the communication systems. The proposed filter design is operated in K-band and targeted for millimeter wave front end system for 5G telecommunication. Two filter designs with different orientation (design A and B) are investigated for the best performance and compact size. As a result, design B is the best by giving a maximum attenuation of 39.5 dB at 26.4 GHz with the layout size of 33×30 mm.

Author(s):  
M. Schlechtweg ◽  
I. Kallfass ◽  
A. Tessmann ◽  
C. Schworer ◽  
A. Leuther
Keyword(s):  

2004 ◽  
Author(s):  
Patrick Pons ◽  
David Dubuc ◽  
Federic Flourens ◽  
Mohammad Saddaoui ◽  
Samuel Melle ◽  
...  

Author(s):  
Sunil Raosaheb Gagare . ◽  
Dolly Reney .

The new design methods of microwave filter has proved its significance for use in wireless communication systems. Modern wireless communication systems require microwave filters to have stringent specifications such as compact size, robust, conformal, light weight and more importantly cost effective while maintaining its electrical characteristics. Micro-strip filter design and reconfigurable filters present a better prospectus in this regards as it meets the specifications of modern wireless communication applications. Reconfigurable filters can provide control over parameters such as frequency, bandwidth and selectivity while reducing the need of number of switches sandwiched between electrical components. Different methods have provided a new dimension for designing microwave filters .In this article, we present a review on design methods for reconfigurable band-pass filters for next generation wireless technologies such as 4G, 5G and IOT.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Chen ◽  
Longfang Ye ◽  
Jianliang Zhuo ◽  
Yanhui Liu ◽  
Liang Zhang ◽  
...  

In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz), UMTS (2.11–2.20 GHz), WiBro (2.3–2.4 GHz), and Bluetooth (2.4–2.48 GHz) frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.


Sign in / Sign up

Export Citation Format

Share Document