reconfigurable filters
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 6 (1) ◽  
pp. 16-28
Author(s):  
Ambati. Navya ◽  
◽  
Govardhani. Immadi ◽  
Madhavareddy. Venkata Narayana

<abstract> <p>The proposed reconfigurable BPF satisfies the International Telecommunication Unionos (ITU) region 3 spectrum requirement. In transmit mode, the frequency range 11.41-12.92 GHz is used by the direct broadcast service (DBS) and the fixed satellite service (FSS). Direct broadcast service (DBS) in reception mode employs 11.7-12.2 GHz and 17.3-17.8 GHz frequency ranges. Frequency reconfigurable filters are popular because they can cover wide range of frequencies, reducing system cost and space. Another emerging trend is electronic component flexibility or conformability, which allows them to be mounted on non-planar objects and are used in wearable applications. This project contains a frequency-reconfigurable BPF that has been entirely printed on a flexible polimide substrate. Frequency reconfigurability is obtained by using a pin diode HSCH 5318 and it is used to switch between 12 GHz and 18 GHz. The prototype reconfigurable BPF is highly compact and low-cost due to the flexible polimide substrate and the measured results are promising and match the simulated results well.</p> </abstract>


2021 ◽  
Author(s):  
Tae-Hak Lee ◽  
Sang-Gyu Lee ◽  
Jean-Jacques Laurin ◽  
Ke Wu

This chapter discusses recent development of reconfigurable filters. The technical terminology reconfigurable means that a circuit is designed in a way to have various electrical characteristics comparing with one which has a static feature. For the filter design, the various electrical characteristics can be considered as the filter can tune its operating frequency, bandwidth, and/or have multiple operational modes, that is, bandstop or bandpass modes. Also, recently, the filters that can exhibit an improved impedance matching performance over its stopband have been reported. It provides more options for the filter designers to realize the reconfigurable filters having reflective and/or absorptive frequency response types to satisfy a prior given requirement. In this chapter, recently devised filter designs will be covered and essential frequency tuning elements to realize the reconfigurable characteristic will be introduced as well.


2021 ◽  
Author(s):  
David Moss

Abstract Integrated Kerr microcombs are emerging as a powerful tool as sources of multiple wavelength channels for photonic RF and microwave signal processing mainly in the context of transversal filters. They offer a compact device footprint, very high versatility, large numbers of wavelengths, and wide Nyquist bands. Here, we present our recent progress on Kerr microcomb-based photonic RF and microwave reconfigurable filters, based both on transversal filter methods and on RF to optical bandwidth scaling. We compare and contrast results achieved with wide comb spacing combs (200GHz) with more finely spaced (49GHz) microcombs. The strong potential of optical micro-combs for RF photonics applications in terms of functions and integrability is also discussed.


Photonics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 48
Author(s):  
João Pedro Pavia ◽  
Nuno Souto ◽  
Marco Alexandre Ribeiro

A study on the design, simulation and characterization of a reconfigurable terahertz (THz) filter, composed of two frequency-selective surfaces (FSSs) with applications on sensor devices in general and highly sensitive stress sensors, is presented in this paper. Using the developed theoretical model, we found out that by careful tuning the wire parameters, it is possible to control the filter sensitivity and also the energy transmission and reflection that passes through the structure. Numerical modelling of both the mechanical and electromagnetic components (using the elasticity equation and Maxwell’s equations, respectively) has been undertaken for two types of the device assemblies based on different thermoplastic polymers transparent to the THz radiation, namely: high-density polyethylene (HDPE) and polytetrafluoroethylene (PTFE), operating in a THz window from 395 to 455 GHz. The numerical results allowed us to characterize the relation between the reflectance/transmittance and the amount of force required to obtain a specific frequency shift along that window. It was found that the device assembled with HDPE presents a more linear response and it is able to pass from a full transparency to almost full opacity using only its linear operating zone. Due to its characteristics, this THz filter might be an interesting solution not only for THz sensors based on reconfigurable filters but also for optical modulators for the THz domain.


2020 ◽  
Author(s):  
David Moss

Microcombs are powerful tools as sources of multiple wavelength channels for photonic RF signal processing. They offer a compact device footprint, large numbers of wavelengths, and wide Nyquist bands. Here, we review recent progress on microcomb-based photonic RF signal processors, including true time delays, reconfigurable filters, Hilbert transformers, differentiators, and channelizers. The strong potential of optical micro-combs for RF photonics applications in terms of functions and integrability is also discussed.


2020 ◽  
Author(s):  
David Moss

Integrated Kerr microcombs are emerging as a powerful tool as sources of multiple wavelength channels for photonic RF and microwave signal processing mainly in the context of transversal filters. They offer a compact device footprint, very high versatility, large numbers of wavelengths, and wide Nyquist bands. Here, we review recent progress on Kerr microcomb-based photonic RF and microwave reconfigurable filters, based both on transversal filter methods and on RF to optical bandwidth scaling. We compare and contrast results achieved with wide comb spacing combs (200GHz) with more finely spaced (49GHz) microcombs. The strong potential of optical micro-combs for RF photonics applications in terms of functions and integrability is also discussed.


Technologies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Salman Arain ◽  
Abdul Quddious ◽  
Symeon Nikolaou ◽  
Photos Vryonides

In this paper, two implementations of reconfigurable bandwidth bandpass filters (BPFs) are demonstrated both operating at a fixed center frequency of 2.4 GHz. The proposed reconfigurable bandwidth filters are based on a square ring resonator loaded with λg/4 open-ended stubs that are permanently connected to the ring and converted to either 3λg/4 open-ended stubs or λg/2 short-ended stubs by means of positive-intrinsic-negative(PIN) diodes to implement two reconfigurable bandwidth states for each case. Due to the symmetrical nature of the design, even- and odd-mode analysis is used to derive the closed-form to describe the reconfigurable filters’ behavior. The switching between narrowband and wideband is achieved using PIN diodes. In the first implementation (λg/4 open-ended stubs to 3λg/4 open-ended stubs), a reconfigurable bandwidth bandpass filter is proposed where additional out-of-band transmission zeros are generated by integrating a λg/2 open-ended stub at the input port. In the second implementation (λg/4 open-ended stubs to λg/2 short-ended stubs), further improvement in the upper stopband is achieved by utilizing a pair of parallel coupled lines (PCLs) as feeding lines and a pair of λg/4 high impedance short-ended stubs implemented at the input and output ports. To verify the validity of the simulated results, the prototypes of the proposed reconfigurable filters were fabricated. For the first case, measured insertion loss is less than 1.8 dB with a switchable 3-dB fractional bandwidth (FBW) range from 28% to 54%. The measured results for the second case exhibit a low insertion loss of less than 1 dB and a 3-dB fractional bandwidth that can be switched from 34% to 75%, while the center frequency is kept constant at 2.4 GHz in both cases.


Author(s):  
Sunil Raosaheb Gagare . ◽  
Dolly Reney .

The new design methods of microwave filter has proved its significance for use in wireless communication systems. Modern wireless communication systems require microwave filters to have stringent specifications such as compact size, robust, conformal, light weight and more importantly cost effective while maintaining its electrical characteristics. Micro-strip filter design and reconfigurable filters present a better prospectus in this regards as it meets the specifications of modern wireless communication applications. Reconfigurable filters can provide control over parameters such as frequency, bandwidth and selectivity while reducing the need of number of switches sandwiched between electrical components. Different methods have provided a new dimension for designing microwave filters .In this article, we present a review on design methods for reconfigurable band-pass filters for next generation wireless technologies such as 4G, 5G and IOT.


Sign in / Sign up

Export Citation Format

Share Document