allpass filter
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 10 (5) ◽  
pp. 2617-2626
Author(s):  
Amirul Aizat Zolkefli ◽  
Noor Azwan Shairi ◽  
Badrul Hisham Ahmad ◽  
Adib Othman ◽  
Nurulhalim Hassim ◽  
...  

In this paper, a switchable bandstop to allpass filter using cascaded transmission line SIW resonators is proposed. The switchable filter is performed by the switchable cascaded transmission line SIW resonators using discrete PIN diodes. Therefore, it can be used for rejecting any unwanted frequencies in the communication systems. The proposed filter design is operated in K-band and targeted for millimeter wave front end system for 5G telecommunication. Two filter designs with different orientation (design A and B) are investigated for the best performance and compact size. As a result, design B is the best by giving a maximum attenuation of 39.5 dB at 26.4 GHz with the layout size of 33×30 mm.


2020 ◽  
Author(s):  
Xi Zhang

Allpass filter is a computationally efficient versatile signal processing building block. The interconnection of allpass filters has found numerous applications in digital filtering and wavelets. In this chapter, we discuss several classes of wavelet filter banks by using allpass filters. Firstly, we describe two classes of orthogonal wavelet filter banks composed of two real allpass filters or a complex allpass filter, and then consider design of orthogonal filter banks without or with symmetry, respectively. Next, we present two classes of filter banks by using allpass filters in lifting scheme. One class is causal stable biorthogonal wavelet filter bank and another class is orthogonal wavelet filter bank, all with approximately linear phase response. We also give several design examples to demonstrate the effectiveness of the proposed method.


Author(s):  
Jiun-Wei Horng ◽  
Chun-Yang Tsai ◽  
Te-Chi Chen ◽  
Chang-Ming Wu

Background: Three high input impedances voltage-mode first-order filters are presented. Methods: The first proposed circuit uses one multi-output second-generation current conveyor, two resistors and one grounded capacitor. The second proposed circuit uses two second-generation current conveyors, three resistors and one grounded capacitor. The third proposed circuit uses one multi-output second-generation current conveyor, one resistor and two grounded capacitors. Results: First-order lowpass and allpass filters can be simultaneously obtained in the first proposed circuit. First-order lowpass, highpass and allpass filters can be simultaneously obtained in the second proposed circuit. The third proposed circuit can realize first-order allpass filter. Conclusion: All the proposed circuits have the advantages of high input impedances and using only grounded capacitors.


2019 ◽  
Vol 10 (1) ◽  
pp. 187 ◽  
Author(s):  
Sebastian J. Schlecht

Since the introduction of feedforward–feedback comb allpass filters by Schroeder and Logan, its popularity has not diminished due to its computational efficiency and versatile applicability in artificial reverberation, decorrelation, and dispersive system design. In this work, we present an extension to the Schroeder allpass filter by introducing frequency-dependent feedforward and feedback gains while maintaining the allpass characteristic. By this, we directly improve upon the design of Dahl and Jot which exhibits a frequency-dependent absorption but does not preserve the allpass property. At the same time, we also improve upon Gerzon’s allpass filter as our design is both less restrictive and computationally more efficient. We provide a complete derivation of the filter structure and its properties. Furthermore, we illustrate the usefulness of the structure by designing an allpass decorrelation filter with frequency-dependent decay characteristics.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950173 ◽  
Author(s):  
Negovan Stamenković ◽  
Nikola Stojanović ◽  
Goran Perinić

The paper presents the development of an algorithm to obtain stable allpass filter, which acts as a group delay equalizer, with the aim to equalize group delay of the polynomial IIR filter in a maximal flat sense. The proposed method relies on a set of nonlinear equations, derived directly from the flatness conditions of the group delay response at the origin in the [Formula: see text]-plane, with the order to obtain the unknown values of the allpass filter coefficients. The algorithm implemented in the MATLAB platform returns the coefficients of allpass filter. In the given example, first we construct a minimum phase polynomial IIR digital filter with a maximally flat magnitude at origin, next we augment the system with cascade connection of nonminimum allpass digital filter with order to equalize the group delay response of the whole filter in a maximally flat sense.


Sign in / Sign up

Export Citation Format

Share Document