scholarly journals Higher order mode dielectric resonator antenna excited using microstrip line

2020 ◽  
Vol 9 (4) ◽  
pp. 1734-1738
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Abinash Gaya

In this paper, the square-shaped dielectric resonator antenna (DRA) operating on higher order (𝑇𝐸𝛿13) mode for the fifth generation (5G) communication applications is presented. The proposed DR antenna is excited by using a microstrip feed line and designed at the operating frequency of 28 GHz. The Rogers RT/Duroid 5880 material having a thickness of 0.254mm and a dielectric constant of 2.2 is used for the substrate. The commercial CST microwave studio (CST MWS) is used for the optimization and simulation of the antenna design. The reflection coefficient, antenna gain, radiation efficiency, VSWR and radiation pattern are studied. A -10dB bandwidth of 4.6% (1.3 GHz) for VSWR2 with a gain of 5 dBi and radiation efficiency of 89%. The proposed antenna design is suitable for future 5G wireless communication applications.

In this article, a novel offset microstrip line feed Rectangular Dielectric Resonator Antenna is used for bandwidth enhancement. The parameters such as Bandwidth, Return Loss and Radiation efficiency are improved in the proposed antenna. A comparison is also shown for the proposed feed structure with and without conformal strips. The improvement in the bandwidth is observed from 25% to 65% by optimizing the antenna design parameters. It works in three frequency bands, that is, 2.03-3.69 GHz, 3.86-7.26 GHz, and 7.32-9.26 GHz. The proposed antenna is appropriate for WIMAX/WLAN applications.


2015 ◽  
Vol 781 ◽  
pp. 24-27 ◽  
Author(s):  
Raghuraman Selvaraju ◽  
Muhammad Ramlee Kamarudin ◽  
Mohsen Khalily ◽  
Mohd Haizal Jamaluddin ◽  
Jamal Nasir

A Multi Input Multi Output (MIMO) Rectangular Dielectric Resonator Antenna (RDRA) for 1.8 GHz Long Term Evolution (LTE) applications is investigated and presented. The antenna consisting of two rectangular dielectric resonator elements, both resonators are fed by microstrip feed line is etched on FR4 substrate. The simulated impedance bandwidth for port1 and port2 is 26.38% (1.6176-2.1093 GHz) and 26.80% (1.6146-2.1143GHz) respectively for |S11| ≤ -6dB, which can operate on LTE band 1-4,9,10,35-37 and 39. The gain of the MIMO RDRA is 3.2 dBi and 3.1 dBi at 1.8 GHz for port 1and port 2, respectively. The S-parameters, isolation, gain, and MIMO performance such as correlation coefficient and diversity gain of the presented RDR Antenna have been studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. Kamran Saleem ◽  
M. Abdel-Rahman ◽  
Majeed Alkanhal ◽  
Abdelrazik Sebak

A novel antenna-coupled sensor configuration for millimeter wave detection is presented. The antenna is based on two cylindrical dielectric resonators (CDRs) excited by rectangular slots placed below the CDRs. TheHEM11Δmode resonating at 94 GHz is generated within the CDRs and a 3 GHz impedance bandwidth is achieved at center frequency of 94 GHz. The simulated antenna gain is 7.8 dB, with a radiation efficiency of about 40%.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 675 ◽  
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Abinash Gaya ◽  
Hasliza A. Rahim

In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order T E δ 15 x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50   Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.


Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Muhammad Ramlee Kamarudin ◽  
Abinash Gaya ◽  
S Raghuraman ◽  
...  

Author(s):  
Chandravilash Rai ◽  
Sanjai Singh ◽  
Ashutosh Kumar Singh ◽  
Ramesh Kumar Verma

Abstract A circularly polarized ring cylindrical dielectric resonator antenna (ring-CDRA) of wideband impedance bandwidth is presented in this article. The proposed ring CDRA consist of an inverted rectangular (tilted rectangular) shaped aperture and inverted L-shaped slotted microstrip feed line. The tilted rectangular shaped aperture and inverted L-shaped microstrip feed line generate two-hybrid mode HEM11δ and HEM12δ while ring CDRA and slotted microstrip feed line are used for the enhancement of impedance bandwidth. The proposed ring CDRA is resonating between 6.08 and 12.2 GHz with 66.95% (6120 MHz) impedance bandwidth. The axial ratio (AR) bandwidth of 6.99% (780 MHz) is obtained between 10.76 and 11.54 GHz with a minimum AR value of 0.2 dB at a frequency of 11 GHz. The proposed geometry of ring CDRA has been validated with measurement performed by VNA and anechoic chamber. The operating range of the proposed radiator is useful for different applications in X-band.


2019 ◽  
Vol 18 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Byung Kuon Ahn ◽  
Hye-Won Jo ◽  
Jong-Sang Yoo ◽  
Jong-Won Yu ◽  
Han Lim Lee

Sign in / Sign up

Export Citation Format

Share Document