microstrip feed line
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip patch antenna with triple slot for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.4 GHz & 11 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


Author(s):  
Chandravilash Rai ◽  
Sanjai Singh ◽  
Ashutosh Kumar Singh ◽  
Ramesh Kumar Verma

Abstract A circularly polarized ring cylindrical dielectric resonator antenna (ring-CDRA) of wideband impedance bandwidth is presented in this article. The proposed ring CDRA consist of an inverted rectangular (tilted rectangular) shaped aperture and inverted L-shaped slotted microstrip feed line. The tilted rectangular shaped aperture and inverted L-shaped microstrip feed line generate two-hybrid mode HEM11δ and HEM12δ while ring CDRA and slotted microstrip feed line are used for the enhancement of impedance bandwidth. The proposed ring CDRA is resonating between 6.08 and 12.2 GHz with 66.95% (6120 MHz) impedance bandwidth. The axial ratio (AR) bandwidth of 6.99% (780 MHz) is obtained between 10.76 and 11.54 GHz with a minimum AR value of 0.2 dB at a frequency of 11 GHz. The proposed geometry of ring CDRA has been validated with measurement performed by VNA and anechoic chamber. The operating range of the proposed radiator is useful for different applications in X-band.


2021 ◽  
Vol 72 (6) ◽  
pp. 413-418
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract In this research article, the design of a broadband monopole antenna with triband notch characteristics is proposed. Notch characteristics are achieved by using an E-shaped slot on the patch and a U-shaped slot on the 50 Ω microstrip feed line. An E-shaped slot is introduced on the metal patch to reject one frequency band of 6.6 − 7.5 GHz and when an additional U-shaped slot is introduced on the microstrip feed line, it provides two-notch frequency bands of 4.8 − 5.7 GHz and 14.2 − 17.5 GHz. The notch bands are effectively used to avoid undesired interference from the WLAN, C band, and Ku band. The proposed antenna provides a very broad frequency range from 3.3 − 19.5 GHz except for three notch bands. The antenna is small in size and easy to design with only a volume of 29 mm × 21mm × 1.6 mm. The antenna is useful for broadband applications.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip double patch antenna for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.7 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


Author(s):  
Paulen Aulia Lutfia ◽  
Nurhayati Nurhayati ◽  
Samuel Prasad Jones Christydass

Umbrella Monopole Antenna (UMA) proposed in this paper for 5G application. We designed four models of UMA, i.e: UMA-A, UMA-B, UMA-C, and UMA-D. The antenna has a curvature in the patch as an umbrella shape with a feeding shape a microstrip feed line. Four variations of the patch antenna have been designed and get different performance in VSWR, surface current, and directivity. The proposed antenna has a wide bandwidth that operates 8 GHz – 30 GHz with VSWR <2 dB. The Increasing of directivity is reached for UMA-A, UMA-C, UMA-D, and UMA-B, i.e: 6.38 dBi, 7.97 dBi, 8,84dBi, and 9,15 dBi respectively at 24 GHz.  The maximum gain has been reached for UMA-B of 9.15. The lowest frequency that has a return loss of 10 dB has resulted for UMA-D in the frequency around 5 GHz. All of the UMA antennas can be applied for 5G mmwave applications at 24 GHz and 28 GHz.


2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.


The fractal antennas have multiband behavior and also have the capabilities of the size reduction as compared to the other patch antennas. Ahybrid fractal boundary antenna has been designed and simulated in this paper for radio frequency energy harvesting (RFEH). The designed antenna has the multiband behavior, as it resonates at the two frequencies. The multiband behavior of the antenna helps in harvesting the energy from various frequencies band and improves the output of the circuit. This hybrid fractal boundary antenna uses the microstrip feed line to improve the matching performance of the antenna.


A UWB antenna with reconfigurable notch band characteristics is proposed in this paper. The tunable notches are created using modified E shaped resonators that can be reconfigured to modified C shape; etched on either side of the microstrip feed line of a circular patch UWB antenna. The single and dual band rejection characteristics are created by using C and E shaped structure respectively. Reconfigurability is achieved by using two RF switches. By varying the ON and OFF states of the RF switches, two different notch bands are created; single notch band from 4 to 6.2 GHz and an additional notch band from 7.6 to 10 GHz are achieved. These wide bandwidth rejection performance leads to notching of WLAN, WiMAX, C-band frequencies and X band Satellite communication systems.


Sign in / Sign up

Export Citation Format

Share Document