scholarly journals Performance and FMECA of a wind turbine based on SCADA and lidar data

Author(s):  
A. Bennouk ◽  
A. Nejmi ◽  
M. Ramzi

<p>This paper presents an approach to identify risks for different failures that could affect wind turbine performance, and reduce the measured annual electrical production (MAEP). The proposed approach is based on FMECA (failure mode, effects and criticality analysis) and wind turbine performance study. We present firstly the methodology of performance calculation based on IEC 61400 standard, then we identify the energy gap between the MAEP and WAEP for the case study, we present an extended and reviewed FMECA, by introducing definition of factors related to environment, health and security. As a result we present an actions plan for similar failures deduced from wind performance study and risk-based FMECA, in order to reduce failure risks and optimize production by consequence. The case study is a 2.3 MW onshore wind turbine, different data that are used in this paper were collected from SCADA and lidar.</p>

2021 ◽  
Author(s):  
Davide Astolfi ◽  
Gabriele Malgaroli ◽  
Filippo Spertino ◽  
Angela Amato ◽  
Andrea Lombardi ◽  
...  

Wind Energy ◽  
2018 ◽  
Vol 22 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Pietro Bortolotti ◽  
Carlo L. Bottasso ◽  
Alessandro Croce ◽  
Luca Sartori

2016 ◽  
Vol 5 (2) ◽  
pp. 151
Author(s):  
Benedictus Rahardjo ◽  
Bernard Jiang

This study attempts to apply Failure Mode Effects and Criticality Analysis (FMECA) to improve the safety of production system, especially on the production process of an oil company in Indonesia. Since food processing is a worldwide issue and the self management of a food company is more important than relying on government regulations, so the purpose of this study is to identify and analyze the criticality of potential failure mode on the production process, then take corrective actions to minimize the probability of making the same failure mode and re-analyze its criticality. This corrective actions are compared with the before improvement condition by testing the significance of the difference between before and after improvement using two sample t-test. Final result that had been measured is Criticality Priority Number (CPN), which refers to severity category and probability of making the same failure mode. Recommended actions that proposed on the part of FMECA give less CPN significantly compare with before improvement, with increment by 48.33% on coconut cooking oil case study.


2021 ◽  
Vol 9 (4) ◽  
pp. 352
Author(s):  
Tsung-Yueh Lin ◽  
Chun-Yu Yang ◽  
Shiu-Wu Chau ◽  
Jen-Shiang Kouh

Typhoons, such as Soudelor, which caused the collapse of several onshore wind turbines in 2015, pose a considerable challenge to Taiwan’s wind energy industry. In this study the characteristics of the aerodynamic loads acting on a wind turbine due to wind gusts in a typhoon are studied with a view to providing a proper definition of the S-Class wind turbine proposed in International Electrotechnical Commission (IEC) 61400-1. Furthermore, based on analysis of wind data during typhoons, as obtained from the meteorological mast in the Zhangbin coastal area, an extreme wind speed and gust model corresponding to the typhoon wind conditions in Taiwan are herein proposed. Finally, the flow fields around a parked wind turbine experiencing both an unsteady gust and a steady extreme wind were simulated by a numerical approach. Numerical results show that the aerodynamic shear force and overturning moment acting on the target wind turbine in a steady wind are significantly lower than those under an unsteady gust. The gust-induced amplification factors for aerodynamic loadings are then deduced from numerical simulations of extreme wind conditions.


2013 ◽  
Vol 791-793 ◽  
pp. 922-925 ◽  
Author(s):  
Qi Lin ◽  
Yong Chen

The significance of reliability researches are described first. It is necessary to know concepts of reliability without a doubt, and most common measures of reliability are discussed, including reliability function and failure rate. It emphasizes two important analysis approaches: Failure Mode, Effects, and Criticality Analysis (FMECA) and Fault-Tree Analysis (FTA). Last, it provides the quantified result of reliability analysis of a test-bed system with FTA-based RiskA software as a case study, which shows the usefulness of FTA-based reliability measurement.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Mehmet Bilgili ◽  
Mehmet Tontu ◽  
Besir Sahin

Abstract Wind turbine technology in the world has been developed by continuously improving turbine performance, design, and efficiency. Over the last 40 years, the rated capacity and dimension of the commercial wind turbines have increased dramatically, so the energy cost has declined significantly, and the industry has moved from an idealistic position to an acknowledged component of the power generation industry. For this reason, a thorough examination of the aerodynamic rotor performance of a modern large-scale wind turbine working on existing onshore wind farms is critically important to monitor and control the turbine performance and also for forecasting turbine power. This study focuses on the aerodynamic rotor performance of a 3300-kW modern commercial large-scale wind turbine operating on an existing onshore wind farm based on the measurement data. First, frequency distributions of wind speeds and directions were obtained using measurements over one year. Then, wind turbine parameters such as free-stream wind speed (U∞), far wake wind speed (UW), axial flow induction factor (a), wind turbine power coefficient (CP), tangential flow induction factor (a′), thrust force coefficient (CT), thrust force (T), tip-speed ratio (λ), and flow angle (ϕ) were calculated using the measured rotor disc wind speed (UD), atmospheric air temperature (Tatm), turbine rotational speed (Ω), and turbine power output (P) parameters. According to the results obtained, the maximum P, CP, CT, T, and Ω were calculated as approximately 3.3 MW, 0.45, 0.6, 330 kN, and 12.9 rpm, respectively, while the optimum λ, ϕ, U∞, and Ω for the maximum CP were determined as 7.5–8.5, 6–6.3°, 5–10 m/s, and 6–10 rpm, respectively. These calculated results can contribute to assessing the economic and technical feasibility of modern commercial large-scale wind turbines and supporting future developments in wind energy and turbine technology.


2019 ◽  
Vol 1356 ◽  
pp. 012043
Author(s):  
E Gonzalez ◽  
L Valldecabres ◽  
H Seyr ◽  
J J Melero

Sign in / Sign up

Export Citation Format

Share Document