scholarly journals Hybrid method for achieving Pareto front on economic emission dispatch

Author(s):  
Kummari Rajesh ◽  
N. Visali

In this paper hybrid method, Modified Nondominated Sorted Genetic Algorithm (MNSGA-II) and Modified Population Variant Differential Evolution(MPVDE) have been placed in effect in achieving the best optimal solution of Multiobjective economic emission load dispatch optimization problem. In this technique latter, one is used to enforce the assigned percent of the population and the remaining with the former one. To overcome the premature convergence in an optimization problem diversity preserving operator is employed, from the tradeoff curve the best optimal solution is predicted using fuzzy set theory. This methodology validated on IEEE 30 bus test system with six generators, IEEE 118 bus test system with fourteen generators and with a forty generators test system. The solutions are dissimilitude with the existing metaheuristic methods like Strength Pareto Evolutionary Algorithm-II, Multiobjective differential evolution, Multi-objective Particle Swarm optimization, Fuzzy clustering particle swarm optimization, Nondominated sorting genetic algorithm-II.

Author(s):  
Rasmita Rautray ◽  
Rakesh Chandra Balabantaray

In last few decades, Bio-inspired algorithms (BIAs) have gained a significant popularity to handle hard real world and complex optimization problem. The scope and growth of Bio Inspired algorithms explore new application areas and computing opportunities. This paper presents a review with the objective is to bring a better understanding and to motivate the research on BIAs based text summarization. Different techniques have been used for text summarization are genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE), harmonic search (HS).


2021 ◽  
Vol 11 (6) ◽  
pp. 2703
Author(s):  
Warisa Wisittipanich ◽  
Khamphe Phoungthong ◽  
Chanin Srisuwannapa ◽  
Adirek Baisukhan ◽  
Nuttachat Wisittipanit

Generally, transportation costs account for approximately half of the total operation expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would be substantially beneficial to the company. This study focuses on a postman delivery routing problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were applied with particular solution representation to find delivery routings with minimum travel distances. The performances of PSO and DE were compared along with those from current practices. The results showed that PSO and DE clearly outperformed the actual routing of the current practices in all the operational days examined. Moreover, DE performances were notably superior to those of PSO.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


Author(s):  
Shailendra Aote ◽  
Mukesh M. Raghuwanshi

To solve the problems of optimization, various methods are provided in different domain. Evolutionary computing (EC) is one of the methods to solve these problems. Mostly used EC techniques are available like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Differential Evolution (DE). These techniques have different working structure but the inner working structure is same. Different names and formulae are given for different task but ultimately all do the same. Here we tried to find out the similarities among these techniques and give the working structure in each step. All the steps are provided with proper example and code written in MATLAB, for better understanding. Here we started our discussion with introduction about optimization and solution to optimization problems by PSO, GA and DE. Finally, we have given brief comparison of these.


Author(s):  
Dinita Rahmalia ◽  
Teguh Herlambang ◽  
Thomy Eko Saputro

Background: The applications of constrained optimization have been developed in many problems. One of them is production planning. Production planning is the important part for controlling the cost spent by the company.Objective: This research identifies about production planning optimization and algorithm to solve it in approaching. Production planning model is linear programming model with constraints : production, worker, and inventory.Methods: In this paper, we use heurisitic Particle Swarm Optimization-Genetic Algorithm (PSOGA) for solving production planning optimization. PSOGA is the algorithm combining Particle Swarm Optimization (PSO) and mutation operator of Genetic Algorithm (GA) to improve optimal solution resulted by PSO. Three simulations using three different mutation probabilies : 0, 0.01 and 0.7 are applied to PSOGA. Futhermore, some mutation probabilities in PSOGA will be simulated and percent of improvement will be computed.Results: From the simulations, PSOGA can improve optimal solution of PSO and the position of improvement is also determined by mutation probability. The small mutation probability gives smaller chance to the particle to explore and form new solution so that the position of improvement of small mutation probability is in middle of iteration. The large mutation probability gives larger chance to the particle to explore and form new solution so that the position of improvement of large mutation probability is in early of iteration.Conclusion: Overall, the simulations show that PSOGA can improve optimal solution resulted by PSO and therefore it can give optimal cost spent by the company for the  planning.Keywords: Constrained Optimization, Genetic Algorithm, Linear Programming, Particle Swarm Optimization, Production Planning


Author(s):  
F. Jia ◽  
D. Lichti

The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn’t guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.


Sign in / Sign up

Export Citation Format

Share Document