scholarly journals Simulation model of PID for DC-DC converter by using MATLAB

Author(s):  
Salam Waley Shneen ◽  
Dina Harith Shaker ◽  
Fatin Nabeel Abdullah

The change in loads in most applications whose source of nutrition is a renewable energy system. Renewable energy systems can change according to climatic conditions. To control and control these changes, the use of conventional control systems such as PIDs. The PID is one of the most common and used conventional control systems that have been chosen to output the type of power electronic devise (DC-DC converter) in different working conditions. The current study aims to improve the system performance through simulation. Simulation results demonstrate the effectiveness of the system with the controller based on setting parameters such as recording system states, embedded elevation time and transient response.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


2020 ◽  
Author(s):  
Till Kolster ◽  
Rainer Krebs ◽  
Stefan Niessen ◽  
Mathias Duckheim

<div>Corrective transmission system operation can help integrate more renewable energy sources and save redispatch costs by providing a higher utilization of the power grid.</div><div>However, reliable and fast provision of flexibility are key to achieve corrective operation. <br></div><div>This work develops a new method to determine if flexibility from distribution grids is available on transmission corridors when needed. An analysis of the German energy system in the year 2030 is performed to estimate the potential of different flexibility options and shows the potential flexibility distribution systems can contribute to a corrective transmission system operation.<br> </div>


Sign in / Sign up

Export Citation Format

Share Document