scholarly journals Finding the best tour for travelling salesman problem using artificial ecosystem optimization

Author(s):  
Quyen Thi Nguyen ◽  
Minh-Phung Bui

This paper presents a new method based on the artificial ecosystem optimization (AEO) algorithm for finding the shortest tour of the travelling salesman problem (TSP). Wherein, AEO is a newly developed algorithm based on the idea of the energy flow of living organisms in the ecosystem consisting of production, consumption and decomposition mechanisms. In order to improve the efficiency of the AEO for the TSP problem, the 2-opt movement technique is equipped to enhance the quality of the solutions created by the AEO. The effectiveness of AEO for the TSP problem has been verified on four TSP instances consisting of the 14, 30, 48 and 52 cities. Based on the calculated results and the compared results with the previous methods, the proposed AEO method is one of the effective approaches for solving the TSP problem.

2020 ◽  
Vol 11 (1) ◽  
pp. 177
Author(s):  
Pasi Fränti ◽  
Teemu Nenonen ◽  
Mingchuan Yuan

Travelling salesman problem (TSP) has been widely studied for the classical closed loop variant but less attention has been paid to the open loop variant. Open loop solution has property of being also a spanning tree, although not necessarily the minimum spanning tree (MST). In this paper, we present a simple branch elimination algorithm that removes the branches from MST by cutting one link and then reconnecting the resulting subtrees via selected leaf nodes. The number of iterations equals to the number of branches (b) in the MST. Typically, b << n where n is the number of nodes. With O-Mopsi and Dots datasets, the algorithm reaches gap of 1.69% and 0.61 %, respectively. The algorithm is suitable especially for educational purposes by showing the connection between MST and TSP, but it can also serve as a quick approximation for more complex metaheuristics whose efficiency relies on quality of the initial solution.


Author(s):  
Łukasz Strąk ◽  
Rafał Skinderowicz ◽  
Urszula Boryczka ◽  
Arkadiusz Nowakowski

This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic travelling salesman problem (DTSP). The DTSP can be modelled as a sequence of static sub-problems, each of which is an instance of the TSP. We present a method for automatically setting the values of the DPSO parameters without three parameters, which can be defined based on the size of the problem, the size of the particle swarm, the number of iterations, and the particle neighbourhood size. We show that the diversity of parameter values has a positive effect on the quality of the generated results. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO.


Author(s):  
Fayçal Chebihi ◽  
Mohammed essaid Riffi ◽  
Amine Agharghor ◽  
Soukaina Cherif Bourki Semlali ◽  
Abdelfattah Haily

<p>This paper proposes a novel discrete bio-inspired chicken swarm optimization algorithm (CSO) to solve the problem of the traveling salesman problem (TSP) which is one of the most known problems used to evaluate the performance of the new metaheuristics. This problem is solved by applying a local search method 2-opt in order to improve the quality of the solutions. The DCSO as a swarm system of the algorithm increases the level of diversification, in the same way the hierarchical order of the chicken swarm and the behaviors of chickens increase the level of intensification. In this contribution, we redefined the basic different operators and operations of the CSO algorithm. The performance of the algorithm is tested on a symmetric TSP benchmark dataset from TSPLIB library. Therefore, the algorithm provides good results in terms of both optimization accuracy and robustness comparing to other metaheuristics.</p>


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


2021 ◽  
Vol 13 (10) ◽  
pp. 5492
Author(s):  
Cristina Maria Păcurar ◽  
Ruxandra-Gabriela Albu ◽  
Victor Dan Păcurar

The paper presents an innovative method for tourist route planning inside a destination. The necessity of reorganizing the tourist routes within a destination comes as an immediate response to the Covid-19 crisis. The implementation of the method inside tourist destinations can bring an important advantage in transforming a destination into a safer one in times of Covid-19 and post-Covid-19. The existing trend of shortening the tourist stay length has been accelerated while the epidemic became a pandemic. Moreover, the wariness for future pandemics has brought into spotlight the issue of overcrowded attractions inside a destination at certain moments. The method presented in this paper proposes a backtracking algorithm, more precisely an adaptation of the travelling salesman problem. The method presented is aimed to facilitate the navigation inside a destination and to revive certain less-visited sightseeing spots inside a destination while facilitating conformation with the social distancing measures imposed for Covid-19 control.


2021 ◽  
Vol 124 ◽  
pp. 102913
Author(s):  
Maurizio Boccia ◽  
Adriano Masone ◽  
Antonio Sforza ◽  
Claudio Sterle

Sign in / Sign up

Export Citation Format

Share Document