scholarly journals Reliability improvement and loss reduction in radial distribution system with network reconfiguration algorithms using loss sensitivity factor

Author(s):  
Parasa Sushma Devi ◽  
Dasari Ravi Kumar ◽  
Kiran Chakravarthula

<p>Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network.</p>

Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Author(s):  
Mohammed Hamouda Ali ◽  
Mohammed Mehanna ◽  
Elsaied Othman

The impact of the renewable distributed generations (RDGs), such as photovoltaic (PV) and wind turbine (WT) systems can be positive or negative on the system, based on the location and size of the DG. So, the correct location and size of DG in the distribution network remain an obstacle to achieving their full possible benefits. Therefore, the future distribution networks with the high penetration of DG power must be planned and operated to improve their efficiency. Thus, this paper presents a new methodology for integrated of renewable energy-based DG units with electrical distribution network. Since the main objective of the proposed methodology is to reduce the power losses and improve the voltage profile of the radial distribution system (RDS). In this regard, the optimization problem was formulated using loss sensitivity factor (LSF), simulated annealing (SA), particle swarm optimization (PSO) and a combination of loss sensitivity index (LSI) with SA & PSO (LSISA, LSIPSO) respectively. This paper contributes a new methodology SAPSO, which prevents the defects of SA & PSO. Optimal placement and sizing of renewable energy-based DG tested on 33-bus system. The results demonstrate the reliability and robustness of the proposed SAPSO algorithm to find the near-optimal position and size of the DG units to mitigate the power losses and improve the radial distribution system's voltage profile.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


Author(s):  
Yahiaoui Merzoug ◽  
Bouanane Abdelkrim ◽  
Boumediene Larbi

<p>The aim of this article is to apply the Particle Swarm Optimization (PSO) method to find the best location for the wind turbine in the radial distribution network. The optimal location is found using the loss sensitivity factor. By respecting the constraints of the active power transmitted in the branches and the limits of the voltages modules for all the nodes. The validity of this method is tested on a 33-IEEE test network and the results obtained are compared with the results of basic load flow.</p>


2015 ◽  
Vol 785 ◽  
pp. 38-42
Author(s):  
Aimi Idzwan Tajudin ◽  
Ahmad Asri Abd Samat ◽  
Pais Saedin ◽  
Mohamad Adha Mohamad Idin

—Network reconfiguration is a process of changing the original structure of the distribution network system with the intention of balancing the load in every system’s feeder at the same time to optimize the operation of the system. The process involve the changing of switching state (tie switches and sectionalize switches), with the aim to find the best combination that can increase the performance of the system while satisfying with the operational constraints. The extreme necessity to the process has become a challenging mission for the researcher to overcome the reconfiguration problems. Recent years have seen a rapid development of evolutionary algorithms and swarm intelligence based algorithms to resolve for network reconfiguration problems. For that reason, this report deals with Artificial Bee Colony (ABC) algorithm to be implemented in network reconfiguration procedure to achieve the optimum level of operation. The ease and simplicity of the algorithm and the capability to find the global optimization solution has made this algorithm appropriate for this project. The objective of this work focused on improvements of distribution power system, in terms of minimizing the total real power loss and improving the voltage profile within the acceptable value. The algorithm was tested on two different radial distribution system (33 bus and 69 bus radial distribution systems)


2019 ◽  
Vol 11 (6) ◽  
pp. 1607 ◽  
Author(s):  
Wilson Pavón ◽  
Esteban Inga ◽  
Silvio Simani

This paper proposes a three-layer model to find the optimal routing of an underground electrical distribution system, employing the PRIM algorithm as a graph search heuristic. In the algorithm, the first layer handles transformer allocation and medium voltage network routing, the second layer deploys the low voltage network routing and transformer sizing, while the third presents a method to allocate distributed energy resources in an electric distribution system. The proposed algorithm routes an electrical distribution network in a georeferenced area, taking into account the characteristics of the terrain, such as streets or intersections, and scenarios without squared streets. Moreover, the algorithm copes with scalability characteristics, allowing the addition of loads with time. The model analysis discovers that the algorithm reaches a node connectivity of 100%, satisfies the planned distance constraints, and accomplishes the optimal solution of underground routing in a distribution electrical network applied in a georeferenced area. Simulating the electrical distribution network tests that the voltage drop is less than 2% in the farthest node.


Sign in / Sign up

Export Citation Format

Share Document