scholarly journals Gbest Artificial Bee Colony for Non-convex Optimal Economic Dispatch in Power Generation

Author(s):  
M. N. Abdullah ◽  
A. F. A. Manan ◽  
J. J. Jamian ◽  
S. A. Jumaat ◽  
N. H. Radzi

Non-convex Optimal Economic Dispatch (OED) problem is a complex optimization problem in power system operation that must be optimized economically to meet the power demand and system constraints. The non-convex OED is due to the generator characteristic such as prohibited operation zones, valve point effects (VPE) or multiple fuel options. This paper proposes a Gbest Artificial Bee Colony (GABC) algorithm based on global best particle (gbest) guided of Particle Swarm Optimization (PSO) in Artificial bee colony (ABC) algorithm for solving non-convex OED with VPE. In order to investigate the effectiveness and performance of GABC algorithm, the IEEE 14-bus 5 unit generators and IEEE 30-bus 6 unit generators test systems are considered. The comparison of optimal solution, convergence characteristic and robustness are also highlighted to reveal the advantages of GABC. Moreover, the optimal results obtained by proposed GABC are compared with other reported results of meta-heuristic algorithms. It found that the GABC capable to obtain lowest cost as compared to others. Thus, it has great potential to be implemented in  different types of power system optimization problem.

2013 ◽  
Vol 483 ◽  
pp. 630-634
Author(s):  
Shu Chuan Gan ◽  
Ling Tang ◽  
Li Cao ◽  
Ying Gao Yue

An algorithm of artificial colony algorithm to optimize the BP neural network algorithm was presented and used to analyze the harmonics of power system. The artificial bee colony algorithm global searching ability, convergence speed for the BP neural network algorithm for harmonic analysis is easy to fall into local optimal solution of the disadvantages, and the initial weights of the artificial bee colony algorithm also greatly enhance whole algorithm model generalization capability. This algorithm using MATLAB for Artificial bee colony algorithm and BP neural network algorithm simulation training toolbox found using artificial bee colony algorithm to optimize BP neural network algorithm converges faster results with greater accuracy, with better harmonic analysis results.


2016 ◽  
Vol 12 (4) ◽  
pp. 45-62 ◽  
Author(s):  
Reza Mohammadi ◽  
Reza Javidan

In applications such as video surveillance systems, cameras transmit video data streams through network in which quality of received video should be assured. Traditional IP based networks cannot guarantee the required Quality of Service (QoS) for such applications. Nowadays, Software Defined Network (SDN) is a popular technology, which assists network management using computer programs. In this paper, a new SDN-based video surveillance system infrastructure is proposed to apply desire traffic engineering for practical video surveillance applications. To keep the quality of received videos adaptively, usually Constraint Shortest Path (CSP) problem is used which is a NP-complete problem. Hence, heuristic algorithms are suitable candidate for solving such problem. This paper models streaming video data on a surveillance system as a CSP problem, and proposes an artificial bee colony (ABC) algorithm to find optimal solution to manage the network adaptively and guarantee the required QoS. The simulation results show the effectiveness of the proposed method in terms of QoS metrics.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
R. Mageshvaran ◽  
T. Jayabarathi

Real and reactive power deficiencies due to generation and overload contingencies in a power system may decline the system frequency and the system voltage. During these contingencies cascaded failures may occur which will lead to complete blackout of certain parts of the power system. Under such situations load shedding is considered as an emergency control action that is necessary to prevent a blackout in the power system by relieving overload in some parts of the system. The aim of this paper is to minimize the amount of load shed during generation and overload contingencies using a new meta-heuristic optimization algorithm known as artificial bee colony algorithm (ABC). The optimal solution for the problem of steady state load shedding is done by taking squares of the difference between the connected and supplied real and reactive power. The supplied active and reactive powers are treated as dependent variables modeled as functions of bus voltages only. The proposed algorithm is tested on IEEE 14, 30, 57, and 118 bus test systems. The applicability of the proposed method is demonstrated by comparison with the other conventional methods reported earlier in terms of solution quality and convergence properties. The comparison shows that the proposed algorithm gives better solutions and can be recommended as one of the optimization algorithms that can be used for optimal load shedding.


Author(s):  
Reza Mohammadi ◽  
Reza Javidan

In applications such as video surveillance systems, cameras transmit video data streams through network in which quality of received video should be assured. Traditional IP based networks cannot guarantee the required Quality of Service (QoS) for such applications. Nowadays, Software Defined Network (SDN) is a popular technology, which assists network management using computer programs. In this paper, a new SDN-based video surveillance system infrastructure is proposed to apply desire traffic engineering for practical video surveillance applications. To keep the quality of received videos adaptively, usually Constraint Shortest Path (CSP) problem is used which is a NP-complete problem. Hence, heuristic algorithms are suitable candidate for solving such problem. This paper models streaming video data on a surveillance system as a CSP problem, and proposes an artificial bee colony (ABC) algorithm to find optimal solution to manage the network adaptively and guarantee the required QoS. The simulation results show the effectiveness of the proposed method in terms of QoS metrics.


Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


Author(s):  
Prativa Agarwalla ◽  
Sumitra Mukhopadhyay

Pathway information for cancer detection helps to find co-regulated gene groups whose collective expression is strongly associated with cancer development. In this paper, a collaborative multi-swarm binary particle swarm optimization (MS-BPSO) based gene selection technique is proposed that outperforms to identify the pathway marker genes. We have compared our proposed method with various statistical and pathway based gene selection techniques for different popular cancer datasets as well as a detailed comparative study is illustrated using different meta-heuristic algorithms like binary coded particle swarm optimization (BPSO), binary coded differential evolution (BDE), binary coded artificial bee colony (BABC) and genetic algorithm (GA). Experimental results show that the proposed MS-BPSO based method performs significantly better and the improved multi swarm concept generates a good subset of pathway markers which provides more effective insight to the gene-disease association with high accuracy and reliability.


Author(s):  
Premalatha Kandhasamy ◽  
Balamurugan R ◽  
Kannimuthu S

In recent years, nature-inspired algorithms have been popular due to the fact that many real-world optimization problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to develop an optimization method whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. A black hole is an object that has enough masses in a small enough volume that its gravitational force is strong enough to prevent light or anything else from escaping. Stellar mass Black hole Optimization (SBO) is a novel optimization algorithm inspired from the property of the gravity's relentless pull of black holes which are presented in the Universe. In this paper SBO algorithm is tested on benchmark optimization test functions and compared with the Cuckoo Search, Particle Swarm Optimization and Artificial Bee Colony systems. The experiment results show that the SBO outperforms the existing methods.


Sign in / Sign up

Export Citation Format

Share Document